

#  at harvard college. Vol. IN. No. 3. 

## SELECTIONS

From

# EMBRYOLOGICAL MONOGRAPHS. 

## COMPILED BY

ALEXANDER AGASSIZ, WALTER FAXON, and E. L. MARK.

III.

ACALEPIS,
By J. WALTER FEWKES;

AND POLYPS,

CAMBRIDGE:
引rinted for tije fluscum.
September, 1884.

## NOTICE.

Tue present number of the Memoirs of the Musenm forms the third Part of the I'lates aceompanying the Selections from Embryologieal Monographs.

$$
\text { l'art I. Crustacea, by Walter Faxon . . . Mem. M. C. Z., IX. No. } 1
$$

" II. Eehinolermata, by Alexanjer Agassiz . . " " " 2
" III. Aealephs, by J. Walter Fewies ; Polyps, by E L. Marik " " " 3

The Bibliography thus far published eonsists of: -
I. Crustacea, by Whiter Faxon . . . Bull. M. C. Z., IX. No. 6
II. Eehinodermata, by Alexinder Agassiz . " " X. " ュ

Jif. Aealephs, by J. Walter Fewies . . . " " NI. " 10
Other Parts of the Bibliography and of the Plates are in preparation.

## TABLE OF CONTENTS.

Plates I-VIII. - Development of the Ifrmezoa. Figures from Alexander Agassiz, Louis Agassiz, Geo. J. Aldiax, Chel Ciun, J. Waltef Ffikes, 11. Ful, E. IIeckel, Nicolaus Klfinenberg, G. von Koch, A. Kowalewsey, John McChady, E. Metschnikoff, aml P. E. Müiler.

Plates I., II., III., IV., and V. Development of the IIydroid.s.
Plate I. - 1-11 Mydra . . . . . Fimm Nioblats Fileivexberg.
12-22 Chntclabrum (11yriolhcla) phrygium . "Gen. J. Alladx.
Plate II. - 1-16 Coryme mirobitis . . . . "6 Louts Acassiz.
17-23 Ilybocoton mulifer . . . " " "
Plate III. - $1-5$ Obelia commisuralis . . . " 6 "
5" Obelia geniculete . . . Geo. J. Ablann.
6-11 Clyfia potcriume . . . . " Louis Agassiz.
12-16 Lamedra flexunsa . . . Gfo. J. Allahan.
17, 18 Laomalea amphora . . . . " Loims Agassiz.
19-25 Eucope polysigle . . . " A. Kuwalewser.
20-30 Tubutarit lerym. . . . . " G. ron Kocn.
Plate IV. - 1-10 Polyzenia leucostyla . . . . . E. Metseminikuff.
11-13 C'uninat thododactyle . . . " ،. "
14-17 Cenina oetomarin . . . Join McChady.
18-20 Cunina rhodoductyla . . . " E. Heckel.
21-26 Geryoniu . . . . "I. FoL.
Plate V. - 1-3 Glossocolon elmybice . . . "E. ITheckel.
4-7 Ginssocodon temuirostris . . . J.Walter Fewkes.
S-15 Cluvutclle, Dicoryme, Tubularia\} . . "Geo. J. Allaan.
Periyonimus, and Bongainvillia
16 Ocemít lomyuite . . . © J. Watrar Fewkes
17-18 Zygordictylit Grocnlardices
" "، "
19 IVillia omata . . . . . Alexander Agassiz.
20-22 Lizia actopunctatu . . . . "J. Waiter Fewees.
23 Lucernarite? . . . "Alemander Agassiz.
24-25 Schizoclutium, and Agtaophenia . . "Gbo. J. Allmat.
26 Cyanea arice . . . . J. Walter Fewfes.

Plates YI. and VII. Development of the Discoided and Siphosofiora.



Plate Vill. Development of the Acraspeda.
Plate VHI.-1-49 Aurclia flavidula and Cyanea arctica From Lovis Agassiz.

Plates IX. and X. Development of the Ctenofiora. Figures from Alexañor Agaseiz, Caril Chin, and J. Walter Fewkes.


Plates XI-XIII. Development of Astuozoa. Fighes from Alexander Agassiz, Avgelo Andres, Wilhelm Buschi, Carl Claús, Hexri de Lacaze-Duthiers, Oscar Hertwig und Richard Ifertwgg, Étignne Juubdan, G. von Koch, A. O. Kowalevsky, Edward L. Mark, R. von Willemoes-Suhi, and Edmund B. Wilson.

## Plate XI. Devolopment of Zoastilaria (Actinine).



Plates XII. 1-36; XIII. 1-28. Development of Zoantiliria.
Plates XII. 37 -43; XIIL. 29-59. Development of Alcyoxalia.

(For continuation of Aleyouium, sएe Piute NII. Figs. 37-43.)

## REFERENCES TO TIIE PRINCIPAL PHASES OF DEVELOPMENT IN IIYDROZOA AND CTENOPIORA.

For a comparison of the earbest starges of development from the ovin to the mornla, see the Segmentation of the Egg on
Plate I. figs. 1-6, l'ate Il. fig. 1, l'ate IlI. figs. $13^{n}, 13^{t}$, $15,19-21$, for the Hydroidal (llydra, Coryue, Lanmedea, and Eucope).
1'lite IV. figs. 1-4, 21-30, for the Trachymedusie (Polyxenia and Geryonia).
Plate VIll. ligs. $1-8$, for the Acraspeda (Aurelia).
l'ate IX. figs. 1-7, 9-13, 14-19, for the Ctenuhora (Beroë and Pleurobrachia).

For the formation of the Blastulu and Gastrula, see

I'late 1 V . fiys, $\mathbf{5}-7,31-34$, for the 'Trachymeluse (Polyxenia and (xeryonia).
1'ate VI. figs. 10, 20, Plate VII. figs. 1-5, for the Siphonophora (Epibulia, Physophorin, and itralma).
I'late VILI. figs. 9, 10, 11-23, for the Acraspeda (Aurelia).

For the development of the Letrua when Srssile, see
Plate V. figs. $24^{3}-24^{d}$, for the hydroin formed from a free frustule (Schizoclatium).
Plate III. figs. 6-11, $12^{a}-12^{e}, 17,15$, for the development of the hydranth (Clytia and Lamedea).
Ilate V. figs. $25^{2}-25^{c}$, for the development of the Corbula (Aglaophenia).
Plate YIII. tigs. 24-39, Plate V. fig. 23 (Anrelia aud Lucernaria).

For the development of the Bud u:hich becomes a Gonophore, see
Plate I. figs. $1-6,12-14$ ( H ydra and Myriothela).
Plate Il, figs. 2-11, 1t-21 (Coryne and Hybocodon).
I'late IlI. figs. $1-4,15,16,26$ (Obelia, Lamedea, and Tubularia).
I'late III. figs. 7-19, Plate V. figs. 20-22 (Cunina and lizzia).

For the Fice subimming Larve deacloped from the Rud, see
Plate 1. figg. 20-22, Actinula (Slyriothela).
Plate II. figs. 12, 13, 22, 23 (Sarsia).
I'late 111. figs. 5, $5^{a}$ (Obelia). Plate III. figs. 27-30, Plate V. fig. 10, Actimula (Tubularia),
Plate IV. figs. $16-20,35,36$ (Cunina aml Geryonia).
Plate V. firs. 8,9, Sporosae (liroryne); fig. 11, Ambulatory medusa (Clavatella); figs. 12, 14, 15, 16, 17, 18,19 (l'erigonimus, Bouganvillia, Oceania, Zygoductyla, and Willia).
Plate VI. figs. 8, 9 (Porpita, Velella).
Plate V'1I1. figs. 40-49, Plate Y. fig. 26, for the Ephyra (Amrelia).

For the development of the Extermal Outlimes of Larve which are nerer scssile, see
Plate IV. figs, $7-10,16,20,34-36$ (Polywenia, Cunina, and Geryonia). Plate V. figs. 1-7, 26 (Clossocodon and Cyinea).
Plate V'I. figs. $2-7$, for the Dismilea (Velella and Porpita), Plate VII. figs. 1-29, Plate V'l. figs. 1, 10-31, for the Siphonophora (Plystia, Epilnlia, Glcba, Halistemma, Agalmopsis, Agalma, Plyysophora, l'ray: Diploplysa, Diphyes, and Iluggica).
Plate I.K. figs. 24-50, for the Ctemophora (Beroé, ('hiaja, C'allianira, IIormiphora, l'leurolmachial, Plate X. firs. I20 (Beroe, Cestus, C'hiaja, Lampetia, Oeyroí).

# REFERENCES TO THE PRINCIPAL PHASES OF DEVELOPMENT IN ANTHOZOA. <br> Segmentalion. 

Plate XIII. 58, 59, and Plate XII. 37, 38, for Alcyonium digitatum.
" X1ll. 43, for Gorgonia verrucosa.

Blastosphere (in section).
Plate XI. 26, for Actinia mesembranthemum.
" XII. I, "Ceriantlus membranacens.

Gastrilla.
Plate XI. 27, 28, for Actinia mesembranthemno.
" XIl. 2, 3, "Cerianthus membranaceus.

Frec-swinming larva.
Plate XI. 5-23, for Actimia mesembimuthemum.
" X11. $3-15$, "Cerianthus membranacells.
" " $16-20,26,34-36$, for Edwardsia.
" " 39 , for Alcyoniun digitatum.
" XIII. 1-6, " Astroides calycularis.
" " 12, "Balanophyllia regia.
" " 16, "Gorgonia verrucosa.
" " 29-31, " Corallium rubrum.
" " 45, " Astraea sp. ?
" " 47, " Renilla reniformis.

```
                                    Mesenteries and mesenterial filuments.
Plate XI. 5-25, for Actinia mesemuranthemum.
    " "6 29-31, " Actinia sp.?
    " " 33, " Actinia equina.
    " " 35,36," Alamsia diap,hana.
    " " 37, I1', I'. K'. Aiptasia lacerata. (New mesenteries in the offshoot.)
    " Nll. 5, 8, 9, for Cerianthus membranaceus.
    " " 16,18, 20, 22, 23, 27-36, for Elwandsia.
    " "41-43, for Aleyonimm digitatum.
    " XllI. 2-5,19, 20, for Astroides calycularis.
    " "6 15, for Palanophyllia regia.
    " " 0 17, " Astruea Sj. ?
    " " 47-52, " Renilla reniformis.
```


## Tcutacles.

Plate XI. 20-25, for Actinia mesembranthemum.
" Kl I. $5,6,12-15$, for Ceriantlus membranacens.
" " 16-23, 26, 33, for Elwardsia.
"، N1II. 4, 10, for Astroides calycularis.

The corallum.
Plate XIII. 8, 10, 11, 18-28, for Astroides calycularis.
" " 38,41 , for Corallium rubrum.
" " 46, " Gorgonia verrucosa.

Scissiparity.
Plate NI. 37, for Aiptasia lacerata.

# EMBRYOLOGICAL MONOGRAPHS. 

## PLATE I.

## Development of the Hydroida. Figures from Nicolade Kleinenberg and George J. Allmax.

C. cav. Cavity of the plamia.
$c p$. "Struetureless capsule."
E.cb. Epiblast.
$c b$. Epiblastic prominenee.
ex.s. External pellicle, or perisare.
G. $y$ (I. Gastrie eavity.
II. h ל. Hypoblast.
$h b$. Hypohlastie elevation under the epiblastie.
I. $i$. Internal pellicle, or perisate.

Nr. mb. Membrane.
N: n 7. Nneleus (?).
O. om. Drum.
or $r^{\text {. Thin region of walls at one pole where a }}$ mouth is later formes.
T. to. Permanent tentacular processes.
$t a{ }^{\prime}$. Provinional tentacular appulages.
5. Sueker-disk at "pmoximal" extremity.
$\eta$. Situation of mouth at "listal " extremity.
$\theta$. Cellular horlies surrounding the ovam.
$\lambda$. Orifice formem by an invagiation of a tentaenlar process ( $f$ al ${ }^{\prime}$ ).
$\mu$. Chamber filled with "granular protoplasm."
o. Diverticulum from the eavity of the hastostyle from which the heruia-like bud forms.
ш. Highly refraetile body.

1-11. Development of IItdra, from Kleinenkerg, IIydra. Fine Anatomish-Entwicklungegeschichtliche Untershehung. Pl. II., Figs. 10, 11, 16, 17, 18, 19 ; Pl. 111., Figs. 1i, 12, 13, 14, 15.

1. Orum of $I I$. aurentiace in ancehnid comlition, with chlorophyll granulea and yolk spherules (pseudoeells). The large eell in the eenter of the figure is the germinative resicle. "Der Feimfleck des Feimblaselnen ist in der Fig. nieht zu selen, war aher noch rohanden," Klemenherg. The processes thrown ont in all direetions are protoplasmic. The yolk cells are formed from the protoplasm.
2. Germinative resicle liberated from the enveloping substance. mb. Membrane. n 7 . Germinative dot. $\omega$. Refractile body in the geminative lot.
3. Ovim shortly before the rupture of the surrouming eells $(\theta)$. om. Orun.
4. Segmentel orum with two splleres.
5. Still older orum, with four spleres. No segmentation cavity is formed.
6. Morula.
7. Section through the germinative vesicle of 11 . viridis. e.r. s. External pellicle. ga. Borly eavity. i.s. Intermal pellicle.
There is a layer of cells surmonding the horly cavity inside the intemal pellicle. The extemal pellicle (perisare of marine lydroid? ? is ultimately lost; the intermal is absorbet.
8. Embyo of II. aumemiara. cb. Vpiblant. hb. Ilypolast. i.s. Tutemal pellicie. The external pellicle is ruptued and thrown off. The caulate cells (" nerve-muscular") form in the outer layev (cb). The inner hayer ( $h h^{2}$ ) in this stage beeones cellular.
9. Embryo of lastmamed speries, seen in plane of longer axis. The futme mouth opens near or . eb. Epiblast. hb. Hypoblast. i.s. lutermal pelliele.
10. The same with the walls of the two poles similar. eb. Epiblast. hb. Hypoblast. i.s. Intermal pellicle.
11. Embryo after the fomation of the month. A small cluster of cells, not represented in the figure, is represented in lileinenberg's figure just above the mouth. The tentacles appear in fairs, as hollow proeesses.

12-22. Development of Candelabrum pheygium, De Blain. Myriothela phrygia, Fab.). From Allman, On the Strmeture and Development of Myriothela. Phil. Trans. Loy. Soe. CLAV., Pl. LVIl., figs. 1, 2, 3, 4 ; Pl. LVill., firs. $1,2,4,5,6,7,8$.
12. Very young bud, which later forms a gonophore. c b. Epiblast fomming a slight eleration. hb'. Aocompanying lyyoblastie prolongation into the "piblastic prominence. $\mu$. Cavity filled with granular protoplasm. $\sigma$. Diverticulm from the chamber or cavity of the blastostyle.
13. "Hore adranced stage (female); the gronophore has formed a very decided projection from the external surface of the blastostyle, and the gonogenetie chamber $(\mu)$ has begun to slow a differentiation in its contents." Allnan. cb'. Epiblastic prominence above the surface of the blantostyle. J.b. Hypoblastic layer. $\mu$. Gonogenetic chamber: $\sigma$. Diverticulum from the cavity of the blastostyle.
14. The female gonophore still more developed. mb. Menbrane. $\mu$. Gonogenetic chamber. $\sigma$. Divertieulnm from the cavity of the blastostyle.
15. A gonophore ohler than the last.

The wall of the gonophore in a stage of the same, oliler than figure 15 , is ruptured, and the couteuts escape. It (the portion escaping) is, however, grasped by a peenliar clasper, which holds fast to its eapsule by a sucker-like body, and certain changes take place while it is in this embrace.
16. Planula. A segmentation about whiek there is little known has taken place, and the planula has an onter layer ( $c b$ ), an inner layer ( $h b$ ), while a eavity (car.) las been formed by the liquefaction of the central part of the mass. It is cureloped in a membrane (mb), and enelosed in a rapsule, which is firmly leeld by the elaspers. There are no cilia.
17. Embryo with minute pits $(\lambda$ ) forming the orifices of invaginations of the wall of the plannla, and enclosed in a capsule (cp). These invaginations are composed of two layers, and later, when reversed, form the provisional appendages ( $\epsilon^{\prime}$ ).
18. Embryo still encloned in a eapsule and held by the elaspers, both of which structures are not represented. The invaginated appendages ( $t a^{\prime}$ ) have been turned outward.
19. Embryo taken from a capsule in which small papillee have begun to form at one end. These ( $k$ ( 7 ) later elongate into the permanent tentacles. tu'. Provisional appenliges.
20. Eubbro free from the eapsule, which has begun to fasten itself at one extremity by a disk ( $\zeta$ ). $\eta$. Position of the month. ta. Permanent tentacles. tu'. Transitory arms.
21. The larva permanently fastened, possessing permanent arms (ta), lut destitute of transitory appendages.
2.2. Free, locomotive embryo (actinula), just after its escape from the capsule, and younger than the earliest attached condition (20). ta. Permanent arms. ta'. Transitory arms. $\zeta$. Disk for fixation. $\eta$. Mouth region. The arms are represented extended. When retracted, they have the form of ovoid bodies of small sizc. The Iarva remains in the actinula condition only a few days.

## PLATE II.

## Develupment of the Hydroida, continued. Figures from Louls Agassiz.

C. cone. cre. Circular canal.
cav. Cavity.
E. cb. Epiblast.
cb. gm. Epiblastie bud.
cx. man. External wall of the manubrium.
ex. ta. Extemal wall of the tentacle.
ex. vel. External wall of the velum.
F. fil. Constriction in umbrella.
G. ga. Stomach.
gm. Burl.
H. hb. Hypoblast.
hb. gm. Hypoblastic buul.
I. i. men. Internal wall of the manbrium.
$i$. $t a$. Internal wall of the tentacle.
$i . v o l$. Intermal wall of the velum.
$i . v$. Internal bell wall.
M. man. Manubrium.
$m a n^{\prime}$. Confluence of the manubriun and bell.
$m d s$. gm. Medusa bud.
$\left.\begin{array}{l}2 \mathrm{md} \text { s. } \mathrm{gm} . \\ 3 \mathrm{mds} . \mathrm{gm} .\end{array}\right\}$ Suecessively formed medusa buds.
m. w. Midule wall.
N. ncl. Nucleolus.
nt. Nuclens.
o. ocl. Ocellus.
O. or. Mouth.
P. pig. Pigment.
$p y$. Poly].
my. fa. Tentaele of the hydroid.
$p y . t a$. Inside (aromm the mouth) row of hyilroid tentacles.
R. r. tb. Radial tubes.
T. ta. Tentacles.
tá. Tentacular bulb carity.
tab. Enlargement of the tentaele at the union with the border of the bell.
$t b .-t b^{6}$. Chymiferons tubes.
tb. ta. Tube which lies in the same portion of bell (spheromere) as that from which the tentacle haugs.
C. ubr. Unibrella.
$r$. vel. Vrlum.
vt. Vitellus.
$v t . m$. Vitclline membrane.
X. $x^{1}, x^{2}$. Invertel external wall.
§. Projection of the umbrella near the margin.
$\theta$. Chitinons perisare.
$\theta^{\prime}$. Fernle-like enlargement of the perisare.
$\lambda . \lambda \lambda$. Hydroid head.

The figures on this plate were arranged by A. Agassiz.
1-23, from Agassiz, Contribntions to the Natural History of the United States, Vol. III.
Pls. XV1I. figs. 2, 11, 12 ; XVIII. 1, 2, 3, 4, 5, 6, 10, 11, 12, 14, 15. Vol. IV. Pl. XXV. figs. 2, 23, 3, 4, 5, 9, 12, 13, 14, 15.
1-16. Coryne mirabilis, Ag.

1. Ovam. nel. Nneleolus. nt. Nnclens. vt. Vitellus. vt. m. Vitelline membrane.
2. A medusa bud just begiming to form. $c b$. and $k b$. Outer and inner layer of the hydroid. $c b$. gm. and $h b$. gas. Outer and inner layer of the bul.
3. Bud little older than the last; "strctched longitudinally." $c b$. and $h b$. Outer am inner layers of the hydroid. $c b$. $g m$. and $h b$. $g m$. Outer and inuer layers of the bud. $t b$. Begiming of the system of chymifurns tubes.
4, 5. Buls more alvanced in age, in the latter of which ralial tubes have developed, two of which are shown in pofile. $c b$. and $h b$. Onter and inmer layers of the lydroid. $t b$. Clymiferous tube.
4. Older bul showing ehymiferous tubes from the side and face. $c b$. Epiblast of hydroil. $h b$. IIypoblast of the liydroid. hb. gm. Hypoblast of the bul. It will be noticed that the latter wonll seem to be the epiblast. I think it is cither lypoblastic or a third liyer, - the gelatinous layer (mesoblast ?). tb. Chy. miferons tube in profile. $t b^{\prime}$. Chymiferous tube in face.
5. Older embryo, in which a "hom-like sheath" $(\theta)$ (pcrisare) has formed over the surface of the bud. $\varepsilon b$. Epiblast of hydroid. $h b$. Hypoblast of the hydroid. hb.gm. Hypoblast of bud (?). This may be epiblastic. $t b$. Tube in profile. $t b^{\prime}$. Tube in face.
6. Older bnd, in which hypoblast and epiblast are well marked. $c b$. Epiblast. hb. Hypoblast. The circnlar canal (con, cre.) is begiming to form by an approximation of two radial clymiferous vessels on cach side. $x^{1}, x^{2}$. Infolded outer wall. $\theta$. Perisare.
7. In this bul, somewhat older than the preceding, the circular camal (cua. cre.) has formel by a coalescence of the extremities of the radial tubes. $c b$. Epiblast. $h b$. Hypoblast. $i$. $w$. Internal bell wall. m. w. Middle bell wall. man. Maubbrium. ta. Tentacle.
8. Older bud, in which the circular canal (can. cre.) is fully formed, and a velum is developed. cb. Epiblast. $e x . t a$. External wall of the tentacle. cx. mun. External wall of the manubium. cx. vel. External wali of the velum. i. man. Internal wall of the manubrium (?). i. ta. Internal wall of the tentacle. i. vel. Internal wall of the velum. $\theta$. Perisare.
9. Older medusa bud, with tentacles coiled up in the future bell cavity. cen. cre. Circular canal. cb. Epiblast. ex. mon. External wall of the maublorinm. ex. ta. Extermal wall of the teutacle. ex. vel. Extermal wall of the velum. $i$. man. Internal wall of the manbrium. $\quad i$. a . Internal wall of the tentacle. $\theta$. Perisarc.
10. A coustriction takes place at the point where the medusa bud rises from the lydroid, and the luh is separated from its attachment and swims away. The perisare is ruptured to allow this eseape. Free melusa, called Sersir, whicl, according to Agassiz, levelops from the buds of Coryne (tentacles cut ofi). fel. Folds in the side walls of the bell. man. Manubrimn. or. Month. 16. Clymiferons tube. $\sigma$. Remuant of a tube which formerly comected the cavity of the hydroid and that of the manubrium.
11. Older Sarsia. men. Manubrium ; the upper letters (man.) indicate a bulbons enlargement of the cavity of the manurinm where it joins the hyilroil. can. cre. Circular canal. or. Mouth. fa. Tentacles. ubr. Umbrella. val. Vehm.
12. Corgme, showing the relationship of the medusa-buls (future Srotsit) to the tentacles of the lyydroid. mds. gm. Medusit buts. py. Hyitro-polyp axis. py, fa. Polyp tentacles.
13. The male hydroil ; the almost perfect medisa is persistent, "devcloping the spermatic mass aromed the proboscis to an enormous extent," Agassiz. or. Mouth. $p^{m}$. tu. Tentacles of the hyilroil. py. s. Stem of the polyp. man. Minubrium, "loaded with sperm." fo. Tentaele. $\sigma$. Point of attachment of bud (gonophore d) to the hydruil.
14. A more developed male gonophore, which, according to Agassiz, is persistent, and has discharged the spermatic contents. vel. Infolded velum. $\sigma$. Point of attachment of the unbrella to the hydroid.

## 17-23. Irybocoton molifer, Ag.

17. A profile view of the heal of the hydroid, crowded with medusa buds (mds. gm). py. ta. Peripheral row of tentacles. py. ta'. Midlle row of tentacles. py. Hydroil axis. $\theta$. Ferule-like enlargement of the prisarc. $\lambda . \lambda \lambda$. Bases of tentacles (peripheral).
18. Head of a hydroid, with the circle of peripheral tentacles (ta.) cut off. mds. gm. Melusa buds. py. Hydroid axis. $\theta^{\prime}$. Fernle-like enlargement of the perisare.
$18^{2}$. Heal of the lyydroid withont medusa buds, showing the position of the two rows of tentacles. $m$. ta. and py. tu'. 'Tentates drawn together.
19. A young bud in earliest condition.
20. The same; somewh:t older. cb. Epiblast. $h b$. Iypoblast. tb. Chymiferous tubes.
21. A well developed medusa, just before rupturing its connection with the lyydtoid, and showing the tentacles on one side. cav. Bell cavity. can. cre. Cirenlar cemal. cb. Epihast. hb. Hypohlast. man. Mamubrium. man'. Base of mambrium, the cavity of which is somewhat enlaged. mils. gm. Merlusa buds. The second and thind formed luds have begm to appear, and are lettered in order of appearance, $2 m d s$. gm., and 3 mils. $g n n$. ta. Tentacle. tá. Base of teutacle not yet enlarged into a bulb. tb. ta. Chymiferous thbe in the sume spheromere as that to which the tentacle hangs. $16^{3}$. Tube diametrically oprosite the tentacular tube. $t^{6}$. Chymiferous tube facing the observer. $t^{\ddagger}$. Continuation of a chymiferous tube into one of the tentacles. $\xi$. Enlargement of the tube at the junction of $t b^{t}$ and the circular canal (can. cre.).
22. A (femalc ?) medusa patially developed from the base of the tentaele. cav. Internal carity. eb. Epiblast. hb. Hypoblant. tb., th'. Chymiferous tubes in profile and in face. 2 mels. gn. A secondary medusa, butding from the walls of the first. The medasa buds represented in the figure are taken from a medusa alrealy formed.
23. View of a melnsa older than the last, still attached to the lydroid (seen looking at the imer face of the tentacle). cuv. lecll cavity. eb, Epiblast. gm. A small bul, which will probably later develop into a tentacle. hb. Hypoblast. man. Manubrium. man'. lase of umubrium. meds. gm,-3 mels. ym. Medusa
buts in various conditions of growth. ta.-tus. Tentacles, tb. ta. Clyymiferous tube, which lies in the same spleromere as the cluster of tentacles.
24. Medusa just escapel from its lydroid comection with a single well developed tentacle. ecen. cre. Cireular canal. mren. Mamubrimm. $r$. th. liadial tube. ta. Tentade. ta'. Clnster of small bodies at the tentacular base. th. ta. Tentacular tube. vel. Velum. S. A symmetrical development of the umbella near the origin of the tentacle.
25. The same, a day after freedom fiom hydroid (secu from oval side). can. cre. Cireular eanal. man. Manubrium. pig. Pigment? tu. Tentacle. ta'. Cluster of bodies at the base of the tentacle. th. ta. Tentacular tube. vel. Velum.

## PLATE III.

Development of the Hidroida, continued. Figures from Louis Agassiz, George J. Allman, G. von Kocif, and A. Komalewsey.

| A. apex. | Alex. Operenlar summit of gonangium. |
| :---: | :---: |
| B. U1 sto. | Blastostyle. |
| C. cran. cre. | Circular Caual. |
| cal. | Calyx, calycle, hydrotheca. |
| cav. | Cavity. |
| E. eb. | Epilust. |
| $c k$. | Eriblast of stem. |
| G. gr. | Stomach. |
| gre cav. | Gastrie eavity. |
| H. hb. | Hypollast. |
| $h b^{\prime}$. | Hypoblast of stem. |
| II. man. | Mambrium. |
| mem. | Membrane. |
| 0. ocy. | Otocyst. |

or. Mouth.
an. Ovum.
I. pr. Club-shaped body.
i.. r. $t b$. Radial tubes.
T. ta. Tentacles of free or unattached form, gonophore.
$t a^{\prime}$. Tentacles of hydranth.
tb. Radial tnbes.
U. ubr. Umbrella.
$\gamma$. Perisare.
0. Perisare of calyele.
$\sigma$. Ferule-like enlargement of the peduncle of the calycle.
$\phi$. Spadix of the sporosac.
O. ocy. Otocyst.

Figures $1-5,6-12{ }^{2}, 15,16$, were arranged by A. Agassiz.
1-5. Obelia commisuralis, Mectr. From Agassiz, op. cit. Vol. IV., Pl. XXXIV. figs. 13, 13², 16, 17, 18.
1-5 ${ }^{\circ}$. Development of the medusa.

1. Profile view of a medusa lud just forming ou the hydroid. tb. Chymiferous tube. ubr. Umbrella.
2. End view of a bul of the same age. tb. Chymiferous tube.
3. Two medusa-buds in different stages of growth. eb. Epiblast. hb. llypoblast. man. Manubrium. tb. Chymiferons tube. ubr. Umbella.
4. A medusa-bud, in the calycle, from the blastostyle. cb. Epiblast. hb. Hypoblast. $t b$. Chyiniferons tube. ubr: Umbrella.
5. Free medusa (gonophore) as it eseapes from the calycle (view from below). can. cre. Cireular canal. man. Maubrium. ocy. Otocyst. or. Mauth. ta. Teutacle.
5*. Obelie geniculutt, Allm. froun Allman, A Monograph of Gymnoblastic or Tubularian Hydroids. Ray Soc., 1869, 1. 35, fig. 10.

Sexual zoiid with ova (om.) budding from the radial canal (r.tb.) ubr. Umbrelh. $\dot{\varphi}$. "Spadix of the sporosac."

> 6-11. Development of the hydroid head (hydrauth).

6-11. Clytia poterium, Ag. From Agassiz, op. cit. Vol. W., Pl. XXVIM. figs. 4, 6, 7, 8, 9.
These figures show the successive stages in the growth of the hydranth up to the stage (fig. 11) in which it approximates the form of the adult. cav. Cavity of the calycle surrounding the axis. cal. Calycle (horny cup). $c b$. Epiblast. $c b^{\prime}$. Epiblast of the pedicle. ga. Stomach. hb. Hypoblast. hbl. Hypoblast of the pediele. $\theta$. Perisare.
$12^{3}-12^{e}$. Development of Latomeder flexuosa. From Allman, op. cit. p. 72.
$12^{n}-12 \mathrm{e}$. Development of the hydranth.
12. "Very early condition, in which the bud forms a simple cylindrical ceeal offset from the coenosome."
$12^{\text {b }}$. "The distal extremity of the bud has become enlarged, so as to present the form of an inverted coue."
12. "The cone has increased in size, and the soft parts towarls its proximal end have become retracted from the exterual chitinous walls."
12d. "The internal structures have still further withelrawn themselves from the elitinous walls, with which they are now in contact only by a narow proximal and a wider distal zone, between which they present the form of a tubular eyliudrical columu."
12e. "The distal zone of contact has become retracted from the summit of the eup-like envelope of clatine, tentacles have begun to spront from its ciremferenee, and a hypostome las risen from its ecntre. The lealing features of the completely formed hydmath are thas established, and its chitinous envelope has become the hydrotheca."
"The arrows in the figure indicate the direction of the enrrents in the somatic flude." Allman, p. ir .
$13^{n}-13^{\text {f }}, 14^{\text {b }}-14^{\mathrm{k}}$. Lromedea fleruosa. From Allman, op, cit. p. 86.
$13^{a}-13^{b}$. Development of the morula from the ovmm.

13". "Young ovum in the gonophore jreviously to the disappeame of the germinal vesicle; the germinal vesicle is here seen to contain several germinal rpots."
$13^{\text {b }}$. "The germinal resicle and spots have disappeared."
130. "The vitellns has become eleft into two segment spheres."

13 d. "The orm after a second clearage."
13e. "The segmentatiou-spheres have hecone numerous, and many of them now show a distinet nucleus."
13. "The segmentation-spheres have greatly increased in number, and a nucleus can now be detected in each of them."
$14^{2}-14^{k}$. Development of a plamula from the morula.
148. "The segmentation-spheres have still further inereased in number, while the most superficial have become arranged into a stratum distingnishable from the deeper portion of tbe orum."
$14^{\text {b }}$. "The superticial stratum has become more distinct, and is now seen to he composed of long prismatie cells."
$14^{5}$. "The ovmin has begun to clongate itself, and one end has become folded on the remainder."
$14^{\mathrm{k}}$. "The embryo, just after its escape in the form of a ciliated planula."
(Quotations from Allman, in 12-14.)

## 15. Laomelea flexuosa. 16. Obelia genicutata. From Allman, op. cit. p. 48.

15. Gomangium, with ova in its eavity in different conditions of derelopment. apex. Opercular summit. bl sto. Blastostyle. mom. Membane investing the contents of the gonangimm. The ora appear in different stages of growth inside this membranc.
16. Gonangium, with meduse in different conditions of growth, budding from the blastostyle. apex. Operenlar summit. bl sto. llastostyle. mem. Membranc investing the budding meduse. $\gamma$. Calyele. The buds escape through an apical orilice.

17, 18. Laomedea amphora, Ag. From Agassiz, op. cit. V`ol. IV., PI. XXX. figs. 3, 5.
17. Portion of a stem with attached hydranths and calyeles.
18. Magnified view of a single hydrantlı. cal. Hydrotheca. ga. Stomach. $p r$. Proboscidiform clevation. $t a^{\prime}$. Tentacles. $\sigma$. Ferule-like formation of the perisare.
19-25. Eucope polystyla. From Kowalewsky, HAF.T10 tEMII HATB PA3BHTIEMЂ COELENTERATA., Pl. I. figs. $1,3,5,8,9,10$.
19. Segmented ovum.
20. Blastosphere, with the hypoblastic cells ( $h b$.) budding into a central cavity. c $b$. Epiblast.
21. An okler stage, more tongrated and with thicker cpiblastice cells. $h b$. Hypoblastic cells.
22. Planula with solid central mass of hypoblastie cells ( $h b$.), sumounded ly ppiblast (e.b.).

23, 24. Planula with a segmentation (gastric) cavity (gr. cav.). According to kowalewsly the epiblast in an embryo of this age divides into two layers. The deeper of these layers is in our figure lettered lypoblast ( $h b$.), as it is considered hypollastic ill origin. cb. Epillast. hb. Hypoblast.
25. Section of embryo showing the four infolding walls. (Compare with the four infolding walls dividing the young attached Scyplrostoma of Chrysaore, and the young Actinozoan.)
26-30. Tubularia larynt. From Koch, Votänfige Mitthrilungen iber Cölenteraten. Jemaisch. Zcitsch.
Vol. Yll., Pl. XXV'. figs. 12, 15, 10, 17, 19. "Jore or less selhematic.")
26. A Tubularian bud shoring ( $b$.) Epiblast, and $h b$. Hypoblast. Between these an intermediate layer ?
27. Section of an embrgo (actinula?), slowing bergimings of tentaeles ou cach side.
23. Actinula. cav. Civity. eb. Epiblast. hb. Hypoblast. ta. Tentacle. The axis of the tentacle is solid, and composed of hypoblastic erells.
30. An embryo which has just attacherl itself. (Section.)

## PLATE IV．

Development of the Trachymeduse．Figures from Hermann Fol，John McCrady，Elas Metschnikoff，Ernst Hackel，and B．Uljanin．

| E．$b_{l}$ ． | Blastopore． |
| :---: | :---: |
| E．cb． | Epiblast． |
| c $b^{\prime}$ ． | Epiblastic eells． |
| col． | Elpiplasm． |
| G．gu． | Stomach． |
| $g m^{1}, g m$ | Buds in different conditions of growtl． |
| II． 11. | Hypublast． |
| hb．c． | Hypoblastic cells in centre of larva． |
| lu．ta． | Hypoblast in the tentacular axes． |
| $h_{\text {pl }}$ ， | Hypoplasm． |
| L．lub． | f．ips． |
| M．man． | Manubrium． |
| N．$n$ ． | Nerve． |
| $n 2$. | Nutlens． |
| ut cy． | Nematocyst． |
| O．ocy． | Otocyst． |
| or． | Mouth． |
| P．pli． | Folds． |
| S．se．cav． | Segmentation cavity． |

S．sp．Spermatozoan．
T．ta．Tentacle．
$t a^{1}$ ．Points of attachment（tentaeles ？）．
$t t^{2}$ ．Tentacular prominenee．
tb．Chymiferous tube．
U．ubr．Umburlla．
$I$ ．ve．Ticuoles，
vel．Telum．
vt．Titellus．
vt．$m$ ．Vitelline membrane．
$\beta$ ．Star－shapeed figure with dotted rays．
$\theta$ ．Bridge connecting inner and outer cells．
$\sigma^{\prime}$ ．Epiblastic cells．
$\phi$ ．Rib connecting tentacular appendages with the bell margin．
§．Conical tongue projecting from the extremity of the tentacle with base surrounded by a eluster of nematocysts．

Figures 11，12，13，19－27，29，30，were arranged by the author；the remainder were arranged by A．Agassiz．

1－10．Polyxenia lcuenstyla．From Metselmikofl，Studien über die Entwickelung ter Medusen mud Siphonophoren， Zcit．f．Wiss．Zoül．，Vol．XXIV．Pl．III．figs．1，2，3，4，5，7，8，9， 10.

1．Free ormm just dropped in the water．
2．Orum with four segments．
3．Segmented eag with cight segments．
4．Segmentel ovim more arlvanced．
5．Mombla．
6．A ciliated larva with an extemal（epiblastic）layer，and a spongy mass of rítelline cells．
7．An older larra，the body of which has become very much elongated，and the extremities are about to become tentacles．hb．c．Hyphlast of the cential region of the body．hb．tu．Hypoblast of the teatacles．The difference lectween the cells in the two regions is evident．
8．Lava still older，in which two telitacles are formed．
9．Larva three days old，still ciliatel，showing two long tentaclés and the begimning of a new pair（fa⿱⿰㇒一乂⿳⺈⿴囗十一 ）．A gastro－eavity is seen in the midelle of the larva below the new tentacle．
10．Larva four days old，with fon tentacles，a well－marked stomach，and month．In older larve of Polyachia fonr otocysts，each alternating with the tentacles，are next formed；and later，an increase of the number of tentacles，until the adult form is reached．

11-13. Cuntace rhotodnctyla. From Metselmikoff, op. cit., Pl. V. figs. 1, 2, 7.
 progection upwarl, with sulit hypoblistie axis, is a tentacle. There are two layms, and a gastric eavity in thar lenly.
12. The same, still older, with two tontacles and a month opening alremdy formed. In stages intermediate between this and figure 13 thew is hatle change lesides the addition of new tentacles ant the growth of a "stolon " from the midthe of the disk. From this stolen, when there are twele tentall"s, buds derelop.
13. A larsa with two hads ( $g m^{1}$. and $g m^{2}$.) on the stolon. The ohlest bud ( $g m^{1}$.) has two tentanles and an open month. The secomb lnd lass no tentacles. While the fate of these lads is maknown, the original melusin, upon which the budding las ceased, was olserved to develop into a medusa resembling the premt.

14-17. Cunine actonaria, MeCr. From MeCrady, Deseription of Oepuia (Turritonsis) mutricula, nev. spec., and the Embryological History of a siugular Mednsan Larva, fonnd in the eavity of its bell, Pl. VI. figs. 20,27 ; P1. VII. figs. $32,33$.
14. Larral Cuninc, found hanging in the bell cavity of Modecrie (Tumitopsis) mutricult, Me Craty. gfo. Stomach opening through a long, flexible, tube-like horly, thongh a temmat mouth (or). tu. Teutacles by whieh the larva langs.
15. A still older larva, in which the momella (ubr.) and the otocysts ( $n c y$.) hare begun to form. Fone tentacles have developed from the benly in plitec of the two alrealy formed. gro stomach. or. Month.
16. The yomig mednsa now leaves the bell carity of its host, and escapes in the form here represented. Scen from below (oral). gre. c. Gastric chamler. man. Hambrium. ocy. Otocyst. Lu. Teutacle. ubr. Vmbrella. This stage may he called the Ephyra stage.
17. Side view of the last. ocy. Otocyst. fict. Tentacle. ubr. Unbrella.

## 1S-20. Divelopment of Cumina rhoduductyla.

18. A stolon taken from its attachment to the tongne of Curmerine hastatu, with medusa buds in all conditions of growth.

 TOIII II BTHO[P'AФII. MOCLBA. 1876. P1. I. fig. 9. A similar but smaller stolon, whth many attachel melusie before liberation from attachment. $t a$. Points of attachment to the "tongne " of the Cermarina.
19. From llieckel, op. cit., Pl. VI. fig. 76. A lmel which has loosened its attachment to the stolon and beeome free (Ephyra stage). gr. Stomach. n. Nerve. ocy. Otocyst. or. Mouth. tu. Tentacle. th. Tnbe (?). ubr. Umbrella. vel. Velum.

21-36. Development of Geryonic. From Fol, Die erste Eutwiekelung der Geryoniden pies, Jenaisch. Zcitsch., Vol. V11. Pl. XXIV. figs. 1, 2, 3, 5, 6, 7, 11, 12, 13, 15: P1. XXV. figs. 16, 17, 18, 19, 23, 24.
21. Fertilized orum with spermatozon (sp.) in the mnens envelope. pli. Folds in the eger membane. $n$. Nuelens. cpl. Epiplasm (mper plasmie liyer). hpl? Ilypoplasm (lower plasmic layer). vt. m. Vitelline memhanc. $\lambda$. Muens covering.
22. The first plane of segmentation, liviling the ovam into two segmentation spheres. cph. Epiplasin. $h p h$. Ilypplasm. nl. Cell meleus. $\beta$. Protoplasmie duts arranged in star rays.
23. Embryo after the formation of a secont plane of segmentation. eph. Epiplasm. hph. Hypoplasm. nl. Nnclens. pul. Fulds in the memhnate of the egg. $v:$. Vacnoles between the spleeres. vt. m. Vitelline membrane.
24. Embryo after the formation of the fouth plane of seqmentation, consisting of sixtect eells. A segmentation cavity is fouml within, into which opens a hastopore ( $h / p$ ). $n \%$. Cell mackes. $r c$. Low of vacmoles.
25. The ovum after the formation of the fifth plane of segmentation, consisting of thirty-two cells. The process of eell division, known as delamination, has begm in this cumyo. blp. Blastopore. ve. Row of raenoles. Each of the thirty-two segments is diviled into two mequal parts, of which the smaller is formed of granular, and the larger of gramular and transparent protoplasm. In the next stage a division of the thirty-two larger eells takes phace, and in each of these at lime sepmates the gramulur Fom the transparent protoplasm. The sixty-fur masses of lens like shape, composed of granmar protoplasm, thas fomme gre to make up an outer cpiblastic layer, while the thity-two masees of transurent protoplasm form the hypublast.
26. The whm after the sixth plame of segmentation. It consists of thity-two small cells, extemal ( $\mathrm{p} /$ ), and
 $\sigma, \sigma^{\prime}$, bas lomgun.
27. Embryo with sixty-four lentieular cells, forming the epiblastic vesicle, and thirty-two masses, composed of transparent protoplasm, the hypollast ( $h b$ ).
28. Cell at the beginning of the sixth plame of segmentation. cpl. Epiplasm. hp7. Hypoplasm.
29. The epiblastic layer now grows faster than the hypoblast, and the space between them increases, while at points they grow together. Appearance of the orum towards the close of the formation of the seventh plane of segmentation. epl. Epiplasm. hpl. Hypoplasm. $\beta$. Bridge conneeting the two.
30. Appearance of an ovim a day after frnctification. epl. Epiplasm. eb. Epiblast. hb. Hypoblast. $h p l$. Hypoplasm. nl. Cell nuclens. w\%. Vitellus.
31. The wide cavity between the two layers, epillast and liypoblast, now becomes filled with a gelatinous layer. The embryo becomes eiliated, and at the point where epiblast and liypoblast fuses, the epiblast (eb.) is thickened and forms a disk, throngh which opens a month. Embryo thirty hous after impregnation. $c b$. Epiblast. $e b^{\prime}$. Disk-like epliblastie thickening. The disk is seen betreen the dots ( $c b^{\prime}$ ). hb. Hypohlast. ubr: Umbrella, gelatinons tissue of a middle layer.
32. Embryo forty hours after impregnation. $c b$. Edge of the cpiblastic disk. h.b. Hypoblast, whieh fuses with the epiblast at this point. ubr. Umbrella. The epiblast ( $c b$.) is spread as a thin invisible layer over the surface of the umbrella.
33. The oral pole of the embryo three days and ten hours after feeundation. eb. Epiblast. or. Thickened eniblast, whieh later breaks through and forms a mouth. $h b$. Hypollast.
34. Oral $l^{\text {bole }}$ of an embryo six days and twelve hours old (after fecundation), with mouth widely open, and the border of the umbrella (ubr.) drawn somewhat together. eb. Epiblast. hb. Hypoblast. $\phi$. Solid avis of tentacle. $\zeta$. Conical projection at the extremity of the tentacle.
35. Older larva with lips and umbrella shown fiom below. The tentacles are widely extended. cb. Epihlast. ge. Stomach. lab. Lips of entrance to stomaeh cavity, ut cy. Nematocyst. vel. Velum. $\phi$. Comneetion of the bases of the tentacle with the bell margin.
36. Oldest larva, which swims for the most part by means of movements of the velmm (vel). No cilia. gr. Stomach. lab. Lip. ntcy. Nematocyst. ta. Tentacle. The small buds on the rim of the bell indicate the future sense boties as well as rudimentary tentacles. ubr. Umbrella. $\phi$. Tentacular axis of solid liypoblastic cells, and the same axis continned from the base of the tentacle to the bell margin.

## PLATEV.

## Development of the Trachimeduse, comtinued. Young Stages of the Melhsa of the Hydroida, and Acraspeda. Figures from Alexander Agassiz, George J. Allman, J. Walter Fewkes, Erxst Habckel, and Fritz Müller.

| C. can. cre. cav. | Cireular eanal Cavity. |
| :---: | :---: |
| E. cm. ta. | Embryonic tentacle. |
| G. $g \times$. | Stomach. |
| gnt. | Bud. |
| H. hiyth. | Hydrotheea. |
| L. lub. | Lip. |
| l. mm. | Lateral ramus, eorbula rib. |
| M. man. mds. $q m$. | Manubriun. <br> Medusa bud. |
| N. nt cy. | Nematocyst. |
| O. ou. vs. | Ovarian vesiele. |
| ocl. | Ocellus. |
| ocy. | Otoeyst. |
| or. | Mouth. |
| P. pap. | Papilla. |
| R. r.tb. | Radial tnbe. |

$r$. $t b^{\prime}$. Radial tube which has not yet grown to the circular canal.
T. ta. Tentacle.
$\left.\begin{array}{l}t b . \\ t u^{\prime} .\end{array}\right\}$ Cliymifurous tubes.
ย. ubr. Umbrella.
r. vel. Velum.
a. Unrnptured perisare at the extremity of a braneli.
$\beta$. Chitinous envelope ruptured, and the econosare protruding.
§. The ecenosare protruding more than in $\beta$.
\%. Body eseaped from the hydroid.
$\eta$. New brauch.
0. Tube formed about the bud.
$\pi$. Base of attachment.

1-2. Glossocodon curybia (Liriope curybia). From Ilacekel, Beiträge zur Natnrgesehiehte der Hydromedusen, Erstes Heft. Die Familie der Russelquallen (Geryonida), Pl. IlI., figs. 29, 30.

1. Young larva, with bell fully formed, seen from the oval side. The beginnings of four tentaeles, which later form the embryonic tentacles, are seen as four small buls. vol. Velum.
2. Larva of about the same age, seen from one side. ubr. Umbrella.

$$
\text { 3. From Fritz Müller, Archio für Nuturgeschichtc. 1859. Pl. XI., fig. } 16 .
$$

3. Still older medusa, seen from one side. The provisional tentacles are emsiderably developed, and from their tips projeet the tongue-like spurs. cav. Cavity of the bell. ubr. Umbrellia.

4-7. Glossocodon tenuirostris, sp. Ag. From Fewkes, Notes on Acalephs from the Tortugas, with a Deseription of New Genera and Speeies. Bull. Mus. Comp. Zö̈l. Vol. IX., No. 7, Pl. VIl., ligs. 2-5.
4. Larval medusa with stiff embryonic (transitory) tentacles ( $\mathrm{cm} . t \pi$.), in which the permanent tentacles are not developed. man. Manubrium (rudimentary in character). r. $t b$. Radial chymiferous tube. The clubshaped bodies are, eomparatively speaking, very large.
5. Older larva, in which the embryonic tentacles (ent. $t a_{0}$ ) have somewhat diminished in size, and a true tentaele (ta.) has begun to form.
6. Older larva, where the tentacles (ta.) have grown much longer. The manubrium (man.) has also inercased very greatly in size. Embryonic tentacle (em. th.) relueed in size; almost lost.
7. Older larva, wholly destitute of embryonie tentacles, while the the permanent tentaeles ( $t u$. ) are very Iong, as in adult. man. Manubrium. r.tb. Ladial tube. ubr. Umbrella.

8-15. From Allman, ap. cit., Pl. Vlll. figs. 3, 7 ; Pl. IX. figs. 3, 4; Pl. XI. fig. 9; Pl. XVIII. fig. 4; Pl. XX. fig. 4.
8, 9. Dicoryne conferta, Alder.
8. "The female locomotive, ciliated sporosac, shortly after its liberation," "as it appears wheu swimming." It is viewed at right angles to the plane of its two tentacles.
9. Longitudinal scetion (optical) of a female sporosac male at right angles to the plane of the tentacles, and viewed under slight pressure.
10. Actinula of Tubuleria indivisa., Linn. A zooid homologous to a free medusa, whielh is formed in small spherical saes, hauging from an axis, dependent between the tentacles of the hydroid.
"The aetinula, shortly after liheration. It is figured in the attitude assmmed when moving from place to place; the mouth is turned to the surface over which the actimula is moving, while some of the long tentacles are bent in the same direction, and are employed as ambulatory organs." Allman.
11. Clavatella prolifcra, Hincks. An ambulatory larva, seen from the side, using its outstretahed tentacles as walking organs.
12. Young stage of a free medusa (gomphore) of Perigonimus.
13. Yonng medusa of Bongainvillia, reluesented as it appears in motion. The bell walls are contracted, and the velum is pushed ontward.
14. An older (?) Bougainvillia, floating passively, with tentacles widely extended. Subsequent growth from a medusa in this condition into that of the alnlt takes place simply by an increase of the number of tentacles and eye-spots in the bundles at the beil-rim, and an additional complieation of the lips.
15. The same, older.
16. Medusa of Occania lengnida. From a sketch by Fewkes.

The youngest stage of this gonophore. man. Manubriun. ta. T'entacle. th. Chymiferous tube. ubr. Umbrella. vel. Velun.

17-18. Zygodactyla Groenlandict, A. Ag. From Fewkes, Stulies of the Jelly-fishes of Narragansett Bay. Bull. Mus. Comp. Zoö. Vol. VIll., No. 8, lll. V. figs. 5, 6.
17. Youngest kuown medusi of this genns, seen from the oral side of the disk. can. crc. Cireular camal. man. Manubrium. ocy. Otocyst. $r$. $t b$. Radial tube. $r . t b^{\prime}$. Radial tube, which has not yet extented to the eircular canal. tt. Tentacle.
18. Sane larva seen in [rofile. man. Mambrium. r. $t b$. Radial tube. rotb. Intemediate radial tube, which has not yet extruderl to the circular eanal. o cy. Otoeyst. th. Tentacle. The fully-grown medusa has a very large number of ralial clymiferous tubes, otocyst anl trotacles.
19. Willia oracte. From A. Agassiz, op. cil., fig. $274^{2}$. Young gonophore in which the tubes have just begun to bifureate ( $r: t b$.). The yonngest form has four undivided tubes, altermating with four simple bundles of nenatocysts in the bell walls.

20-22. Lizzia octopunctate. From Fewkes, Stulies of the Jelly-fishes of Narragansett Bay. Bull. Mus. Comp. Zö̈l., Vol. V1II., No. 8, Pl. l. figs. 1, 3, 6.
20. Mother medusa, with buds in various conditions of growth forming on the outer walls of the proboscis. $m d s . g m$. Medusa buds. The larger ( $m$ ds. $g m$.) approximates in shape that of a medusa. lab. Lip. ocl. Ocellus. or. Month. tu. Tentacle. ubr. Umbrella. vel. Velnu.

21, 22. Developed buds, with the form which they have when just eseaped from the parent mambrium.
21. Young medusa (oral vicw). cav. Dell cavity. o cl. Ocellus. ta. Tentacle. ubr. Umbrella. vel. Velum.
22. Side view of the last. man. Manubrium, at the base of which are huds of a third generation. r. th. Radial tube. ubr. Umbrella. At the apex there is a canal which formerly afforded frec communicatiou between the eavity of the maubrium of the pruent and that of the bud. The bud, when it severs its comection with the parent, has on the bell rim sixteen tentacles, consisting of four lundles of three tentacles cach, and, alteruating with these, four single tentacles.
23. Young of Haliclystus (Lucemaria?) From A. Agassiz, North American Acalephr. Illustrutcd Catulogue Mus. Comp. Zoö7, No. 2, p. 63. or. Mouth. ubr. Umbrella. $\pi$. Base of attachment.
$23^{3}$. A group of tentacles of the same, in differrnt stage of growth.

$$
24^{3}-24^{4} . \quad \text { Schizoclatium ramosum. Frou Alluau, op. cit., p. } 152 .
$$

24. "Part of an adult colony, magnified about six liameters." a. A terminal part of a branch still invested by a clitinous perisare. $\beta$. The perisare of this lwanch has been ruptured, while the contained comosare has protruled a little, and is visible at the extremity. $\zeta$. The separation of a small body of cenosare from
the branch has been completed, and the portion thus separated has almost freed itself from the branch. $\gamma$. A horly of cenosarc (firustule) has dissolved its comection with the hydroid, and become a free planulalike body swimming in the water.
$2 t^{\text {b }}$. Hydroid formed by a gemmation from the free frustule.
$21^{\circ}$. The frustule $(\gamma)$, after swimming about in the water, secretes a mucus tule ( $\theta$ ), into which it is represcnted in the figure as partially dawn on the right hatul sile (of figure).
$24^{4}$. A bul has been sent ont from the extremity of the frustule ( 18 m ). This bud increases in size, and ultinately forms the hydrod, with hydranth $\left(24^{6}\right)$. From the side of this hydroid a bramel $(\eta)$ is emitted.
$25^{3}-25^{\circ}$. Development of a Corbula in the family of Plumuluride. From Alluan, op. cit., ${ }^{\text {p. }} 60$.

$$
23^{2}-25^{\circ} \text {. Aglaophcnic oluma. }
$$

$25^{\text {a }}$. A rery young corbula. l. rm. Lateral brauch.
25. Older stage of the corbula, with the ovarian vesicles (oa. vs.) already formel as spherical sacs, arising from the midrib of the corbula, between the lateral nani (1. rm).
25. The same, older. of. vs. Ovarian vesicles, called gonangia. l. rm. Lateral rami (costa.) hyti. Single hydrotheca.
25d. Mature corbula. The serrated bolies along the sides are called nematophores. The corlma is a specialized basket-shaped stmetne fomm in certain sertularian hylroids, for the Irotection of the vesilles and their ova.
26. Young Cyanca arctica, showing the umbral prpillae. From Fewkes, Studies of the Jelly-fishes of Narragan. sett Bay. Bull. Mus. Connp. Zuöl., Vol. V1Il., No. 8, Pl. V1I. fig. 1.

## PLATE VI.

Development of the Discoides and Siphonophora. Figures from Alexander Agassiz, Carl Chun, J. Walter Fewkes, Erxst Heckel, Elias Metsciniioff, and P. E. Müller.
A. a. Anterior.
a. nox. Anterior nectocalyx.
$a x$. Axis.
C. C. P. L. Chamber or tube in the primitive hydrophyllium, which is derivel from a cavity early formed in the orum.
cil. Cilium.
cl. Cell.
E. eb. Epiblast.
$e b^{\prime}$. Infolded portion of the epiblast.
cm. ta. Enbryonic tentacle.
F. fil. hycy. Filament of the hydroeyst.
G. gu. Stomach.
gm. Bud.
go phe. Gonophore.
H. hb. Ilypoblast.
$h b^{\prime}$. Large cells (vitelline cells), hypoblastic ?
$h p$. Liver ? Clnster of "brown cells."
hy ph. Hydrophyllium.
hycy. Hydrocyst.
I. i. Interior of bell.
L. la. ap. Peduncle of a tentacular appendage (tentacular knob).
M. mb. Membrane.
mds. gm. Nedusa bud.
ms $b$. Mesoblast.
N. nex: Nectocalyx.
utcy Nematocyst.
O. off. Ovary.
or. Mouth.
$P$. puth. Undigested food in the stomach.
pig. Pigment.
$p^{m} c y$. Pueumatocyst.
pucx. Posterior nectocalyx.
pyt. Polypite.
R. r. tb. Radial tube.
S. socy. Somatocyst.
T. tu. Tentacle.
U. ubr. Umbrella.
V. vel. Velunn.
vt. Vitellus.
a. Float.
$\beta$. Partitions which separate the chambers found in the frame-work supporting the sail.
$\gamma$. Partitions which separate the concentrie chambers of the float in the disk.
0. Rim of the disk.
$\lambda$. Feelers on the under side of the disk.
$\sigma$. Sail.

## 1. From a Sketch by A. Agassiz.

1. Sexual cluster of male amd female gonophores of Physalia. mds. gm. Undeveloped medusa bud. go ph. Female gonophore $\%$, male $\delta$.

2-4. From A. Agassiz, Exploration of the Surface Fama of the Gulf Stream. Mcm. Mus. Comp. Zoöl. Vol. Vill., No. 2, Pl. V1. figs. 1, 2, 3.
2. Young Felella in profile. hp. Liver? $\theta$. him of the disk. $\lambda$. I'rehensile tentacle (hydrocyst ?). $\sigma$. SaiI. A large feeding polyp (polypite) hangs down from the middle of the disk on the under side.
3. Young of the samp, from below (oral view). In the centre is seen the month (or). $\theta$. Border of the disk. $\lambda$. Prehensile "tentacles"? These hodies ( $\lambda$ ), like the hydrocysts of Physophora, are prehensile.
4. The same, a little older, in which the ramifications of the liver extend to the disk margin or horizontal mantle. pyl. Central feeding polyp or polypite. $\lambda$. Prehensile tentacles (hydrocysts).

## 5-7. Raturia. From Sketches by Fewkes.

5. Section throngh Ratarive (young Porpita or Velclla ?), found with Volclla spirans. The section passes vertically througl sail, disk border, and retracted polypite. The sail is seen to be composed of a superficial
wall or membrane ( $m b$. .) stretehed over two rertical flates, which are parallel, and mitel by horizontal floors ( $\beta$.). The kowest of the chambers betweatwo floors ( $a$ ) is a lloat. $\gamma$. Chambers (seven) sitnated betwen horizontal curved partitions in the boly of the disk. hp. Liver? (brown ectls). $\theta$. Disk margin. mf. Folypite.
6, 7. Ruturir, from one side. pyt. Polypite. $\theta$. Disk rim. $\lambda$. Prehensile tentacles (hydroeysts?). $\sigma$. Sinil. Notice the claracteristice vertion lines on extemal wall of the sail. The form of the sail, although mulike that of fig. 2, is not very distant from that of a I eleche a little yonnger.
6. 9. Fronl Agassiz, op. cit., lll. II. fig. 10 ; Pl. V1HI. fig. 8.
1. Medusa of Porpita. ubr. Vimbrella.
2. Malusa of Fifella. r.th. Ladial tubes with yellow cells. abr. Umbrella. ta. Tentacle. Rows of nematocysts are scen on the surface of the bell.

10-19. From Metsehnikoff, Stnlien iiber die Entwickelnug der Melusen mat Siphomphoren. Zit. f. Wis. Zuäl.


## 10-15. Epibulia aurantiaca.

10. Planula with interion filled with spongy eells, and an epiblastic cap ( $c b$ ) on the pointed pole. $a$. is arbitrarily taken as the anterior pole. cl. Spongy mass of cells.
11. Older embryo, in which a nectocalyx and tentacle have legun to form. The epiblast (e b.) rises in two proninences, the smaller of which is the lond of a tentaele (tro), amb the other a neetoealyx (nex.) Under the epiblast is another layer, probably the lyppoblast. The epillast forms the liming of a cavity (the bell carity). Cilia (ci\%.) still remain orer the whole body. The whole vitellas (v\%) is taken up by the spongy mass of cells.
12. An older embryo than the last. Although this is a faithfnl copy of Metschniknfl"s figure, it is, like his, believed to be faulty in this partiontar: The course of the epilalast, after it leaves the lower smface of the bell, on the side turnel to the olserver, probably passes ly reflection into the walls of the tentacle, instead of to the upper pole of the embro. The hyphlast closily corers the infolded part of the epiblast in the bell, and extends, also, iuto the teutacles. It also forms a loop (so cy.), the future somatorys. A gelatinous layer also appears between hypoblast and external epiblast in the nectocalyx. Whole surface ciliated.
13. Older larva, with the primary nectocaly $x$ of consideralhe size. $c b$. Epilhast which lines the hell cavity (i.) and is also streteled over the whole ormm. hb. A layer of hypolilast in the hell. At socy. this hypohbist forms a lonp, the future somatoryst. Between it (hb.) ans the epiblast of the surface of the lirll is a gelatimons layer (? it mesoblast.) hb. Swollen hypohastic cells. $\%$. Vitellus with spongy erll mas. The large projection lined by cells ( $h b^{\prime}$.) becomes later a polypite. Epibuliu, like Crystullodes, absorlis the vitcllus, which is not directly changed into the polypite, as in some speeies of Ayfalma.
14. Older larva (primitive larva). pyt. Polypite with two lajers best marked near the pointed emi. so cy. Somatneyst. ubr. Inabrella. it. Vitellus.
15. Oletest larva, in which the vitellns is wholly absorbel, and a small hydrophyllinm (hyph.) has formed in its phace. A sceont nectocaly $(\alpha, n c x$ ) has formed, whieh, from its future position, is called the anteriur. It is regatiled as homologons with $a$. nex. of fignes 30, 31. The distal end of the polypite (pyt.) is open, forming a mouth. socy. Somatocyst. Althongh the intermediate larre between this and the alult Epibutia are not known, it is probable that the larger nectocalys, with the somatocyst, is transitory, and is later lost. Il can then be supposed that fig. 15 corresponds with a Monophyes larva, or a definite stage (fig. 29) in the eyelical development of Meygica.

## 16-17. Gleba hippopus. Forsk.

16. Embryo, with first nectocalyx beginning to form. Around the whole embryo is stretched an epiblast (ob.).
 below these two. Whole remainder of the vitellus taken up by a spongy mass of cells, which elosely resemble the "fatty cells" of Ctcnophora and other colenterate larve. The bell cavity probably forms by a dissolution of epiblastic cells (o $b^{\prime}$.).
17. Larva, with a helmet-shaped lell (ubro), fully formed. This stag may be callet the primitive larva or Monophycs stage, and is homologons with fiss. 14 and 29. The helmet-shaped bell is probably provisional. $e b$. Epiblast. hb. Hypohlast. r. th. Rahial tube. vt. Vitellus.
18. Inalistemma rubrem. From Metschnikofi, op, cit., Pl. X. fig. ©.

Larva with primitive nectocalyx ( $n c x^{2}$.) beginning to form, showing ilso the yonng pmeumatocyst ( mecy .). In larve yonnarer than this we have two layers - epiblast and hyphast - formed first ; then an elewation of both, by which a eavity is left letween the byphlast and the vitellns. The first structure formol is a bell ( $n e x$.) ; the second ( m cy.), a pumatocyst ; and the third (gm.), probably a tentacle. The puennatocyst
is formed from a portion of the epiblast, which becomes sumonnded by hypoblast. The cavity, as that of a nectocalyx, seems to form hy an at first erescentic-formed dissolution of the cpiblast. The vitellus (vt.) [asses clirectly into the polypite. The bell (ncx.) is probibly (?) provisional (prinitive nectocalyx). The [pignentation (pig.) is eharacteristic.
19. Agalmopris (Strphonomia, anct.) pictm, Fewk. From Metschnikoff, op. cit., Pl. XII. fig. 9.

Embryo in which the pheumatoeyst and embryonic tratacles are well arelopen. The alevelopment of this Plysphore is exephional in forming a flont, insteal of a mectocalyx, at the rery beginning. The youngest larve lremos covered with a sururicial layer - riblist - which is ciliated, and concentrates at one pole, where it forms a phemmatocyst. The second structurt to develop is the tentucle, and un sign of a nectoealyx has yet apeared. mecy. Pnemutocyst, aronnd which is what is left of the mabsorbed vitellus. The ovmm has tle spongy mass in its enter. pig. Pigment on the fmemnatoryst. pyt. Polypite, with a terminal month (or.). The distal eml is pigmentel. The promincut apremage to the polypite, the tentacle (cm. fue), as well as the knot-like bodies which hang from it, are provisional struetures.

20-23. Developunent of Physophora. From Heeckel, Zur Entwickelangagesolichte der Siphonophoren. Eine von der* Utrechter Gesellschalt für Kinnst und Wissensehaft Gekronte I'reisschuift, Il. I. ligrs. 4, 8; Ph. II. fig. 20 ; Pl. 111. fig. 24.
20. Embryo of Physomhore at the elose of the segmentation of the ormm. $c b$. Epiblast. v\% Spongy mass of vitelline cells.
21. Whar larva, in which a primitive hydrophyllium has begno to form at one pole. C. $P$. L. Chanher in the furst formed hydrophyllinm. eb. Epiliast. hb. Hypoblast, which also emoloses the hamber G. $P$. L. $u b r$. The layer between $\varepsilon b$. and $h b$., which forms the gelatinous body of the hydrophyllium. vt. Vitelline, or " sprongy mass of cells."
22. An older larva (prinitive larva), in whieh a primitive hydrophyllium is fully formed. C. P. L. Chamber of the primitive larva. cm. fa. Embryonic tentacle. gm. Buls, the fate of which is not clenly known (probably hydrorysts). Kb. Ilymblast. ms $b$. Gelatinons layer (musublast?). pyt. Polypite. uf ry. Nematoeyst. $\quad 7$. ('anal leading from the clamber, $C$ '. $P . L$, to the cluster of mematorysts (at cy.) (liadial tube of a nectocalyx:) The pimitive hydrophyllinm of this stage is a transitory structure.
23. Larva, after the loss of the primitive hydrophyllimm. fil. hy cy. Filament of the ligdrocyst. hy cy. Hyelroeyst. gu. Stomach. Th. ap. Lateral appendages to the embrgonie tentarle. fa. Fimbryonie tentaele. $n$ cx. First formel nectocalyo. at cy. Nematocyst. or. Mouth, not yet open (').
24. Preyue. From Metschnikoff, op. cil., Pl. V'1I. fig. 16.

- Embryo in what may be ealled a Monophyrs stage, which corresponks with the so-called primitive larva. me. Nectocalyx. my'. Polypite. socy. somatocyst. ubr. Umbrella. The heluet-shaped body (frimi. tive liydrophyllims), proliably provisional.
 Vol. Y'IlI., No. 8 ; Pl. VI. fis. 12. a. ue.r. Anterior nectoealys. go phe Gonophore $\mathcal{f}$. ou. Ovary. socy. Somatocyst. ta. T'eutacle.

26, 27. Diphyes Sicbohlii. From P. E. Miillm, Ingttugelsw over nogle Siphomophomer, Nohurh. Tiilsshz., 3 li. 7 B., Il. XI. firg. 1 ; Pl. NII. fir. 4.
26. Portion of a stem with two attacher memhers, which later develop separately from each other and frum the axis. ax. Axis. hyph. Hydrophyllium. pyt. Polypite. A tentache is also developed, and is shown retraeted under the hediophyllinne.
27. "Eudorice form" of one of the last after separation from the axis. gn ph. Gonophore ( $\delta$ ?). socy. Somatocyst. tu. Tentacle. abr. Unbrella.
28. Euloxiz Lcssonii. From Fewhes, op. cil., Pl. VI. fig. 8. Fully teveloped Euloxia. goph. Gonophore of. ne.r. nectocalyx. ofr. Ovary. so cy. Somatocyst.

The tentacle is cut ofl below the third tentacular knob.

29-31. From Chun, Ueber die Cyclische Entwickelung und die Verwanitschaftsverhaltuisse der Siphonophoren.

The successive stages in the cyclical growth of Eudoxic, aceording to Chun, are: I. Monophyes (29). II. Muggidere (31). III. Eulorice (28).
29. Murophyrs primoriliclis. Chun, "First genelation." A lava jrobably homologans with figs. 17, 2t, and the goming Atgelmu (Pl. Vll. fig. 11), which las luen ealled the primitive larva pyt. Pulypite. r. tb. Lialial tule. socy. Somatueyst. whr. Unbrella.

The anterior nectocalyx (Magyiuce nectocalyx) may be developed from the small bud at the base of the polypite.
30. A larva which still retains a nectocalyx with the form of that of Monophyes, but has a sceond neetocalyx (a. nex.) and a well-developeed axis. The second neetocalys ( $p \cdot n c x^{\text {. }}$ ) is shaped like that of a Mugyince. a. Anterior end of bell, as it moves in water. $p \cdot n c x$. Posterior neetocalyx (neetocalyx of Monophyss). myt. Polypite. r. the liadial tube. tu. Tentaele.
31. "Muggica larwa." A harval (?) courlition with a single characteristie nectocalyx, often, according to Chun, mistaken for a Diphycs with bell (posterior) hroken ofl. a.nex. Anterior nectocalyx. ax. Axis. go $y^{\prime \prime}$. Gonophore. hyph. llydrophyllimm. pyt. Polypite. socy. Somatocysto
Lach of these clusters on the stem probably develops into an Eudexia-like mednsa (28).

## PLATE VII.

## Development of the Sirhosophora continued. Figures from Alexander Agassiz, J. Walter Fewkes, and Elias Metsciniigoff.

A. a. Anterior.
$a x$. Axis.
C. C. P. L. Chamber in the larva, which ultimately becomes a camal in the primitive hydrophyllium.
cl. Cell.
$c n$. Canal.
E. $c b$. Epiblast.
$e b^{\prime}$. Infolding or thiekcning of the epiblast to form the future phemmatophorc.
em. ta. Embryonic tentacles, with cmbryonic knobs.
F. fil. Iny cy. Filament of the hylrocyst.
cr. get. Stomach.
II. hb. Ilypoblast.
hy cy. Hydrocyst.
I. iv. Involucrma.
L. l. vs. Lateral vesicle.
M. ms b. Midlle layer (betwcen epahlast and hypoblast), which forms the gelatinous body of the hydrophyllimm (mesoblast ?).
N. uex. Nectocalyx.
nc $x^{\prime}$. Undeveloped nectocalyxes.
nu. Nucleus.
ne cy. Nematocyst.
O. or. Month.
P. p. Posterior.
pap. Páilla (?).
pig. Tigment.
P. pu cy. Pneunatocyst.
$p^{m} p h$. Pnemmatophore.
pr. hy ph. Primitive hydrolhyllium.
py. Polyp.
py. s. Polyp stem.
pyt. Polypite.
f. r. $r$ tb. Radial tube.
S. sac. Satculus.
scr: hyph. Serrated hydrophyllium.
T. ta. Tentacle.
t. vs. Tcminal vesielc.
$F . v$ Ventral.
vt. Vitellus.
a. Ampullia-like enlargement of the canal of the first formed hydrophyllium.
B. Canal connecting this ampulla with that of the axis.
Central tube in the serrated hydrophyllium.
5. Portion of a chamber in the primitive larva, which remains at the proximal end of the canal passing into the primitive hydrophyllimm.
日. Enlargement of the cavity in the tentacular knob.
$\lambda$. Point of internal attachment of the coiled part of the tentacular knob to the walls of the body which envelops it, and forms the outer walls of the knob.

1-25. Development of Agalma.

1-11. From the ovum to the "primitive larva." 12-20. From the primitive larva to the "Athorybia larva." 21, 22. From the "Alhorybiu larva" to the jonng resembling the adult.

1, 2. Agalma Sarsii. From Metschnikoff, op. cit., Pl. V1H1. figs. $1,2$.

1. Youngest larva, in which the epriblast ( $e b$.) forms a polar eap. The vitellus (vt.) is penctratel by a proto. phasmie network, which diviles it into a spongy inass of glass-elear eells, as in Ctonophore and other Siphonophorce. The external surface is ciliated.
2. An older larva, which has become elongated and more pyriform. The deeper layer ( $h b$.), which is called endolem (hypoblast) by Metschnikoff, may be the beginuings of the clamber C.P. L. The epiblast and hypoblast, probably both tugether, form the layer $e b$.

## 3-5. Agalma clegans, Fewkes. From sketches by Fewkes,

3. Larra older than the last, with the polar cap more raised and a central chanber (C. $P$. L.). The layer $c b$. was not observed to be differentintel into two or more divisions, although it may have component parts corresponding to the epilast, hypoblast, or eren an intermediate gdatinous layer (mesoblast). Nuclei (?) were observel in the vitelline cells.
4. Older larva, with the chamber (C. P. L.) surroumled by two layers. e b. Epiblast. $h b$. Ilypoblast.
5. Site view of the last. The elamber ( (C. P. I.) of the primitive elevation, which is the primitive hyilroplyyllium, has become tube-like. c\%. Vitelline cells (?). ul. Nucleus (?). pig. liginent patehes, with rough projections on the surface of the ovin.

## 6, 7. Ayalma Sursii. From Metschnik off, op. cil., Fl. V'1II. figs. 6, 7.

6. Larva, showing the first formation of the pmeumatoryst, which first appears as an epiblastic structure ( $c u$.). c $b$. Epiblast. ms $b$. Gelatinous thickening, forming the bouly of the pimitive hyirophyllinm, and destined later to increase to a very large size, when the cpiblastie laye lecomes a thin superficial layer of eells stretched over it. 5. Recess alne the spongy mass of witelline cells.
7. Primitive larva, A common larval condition of the Siphomophore, which may genera of Plysophore and Calycophore pass through, listinguinhed on account of a provisional hydrophyllium (or nectocalyx), covering as a helmet the ritellus, which may or may not pass directly into a polypite, The chamber C. P. $L$. is lined with hypoblast ( $h_{t} b$.). The "pilbast ( $c l_{0}$ ) is stretcherl over the vitellus, ind extends as a very thin layer owe the primitive hyilrophyllinm. The great size of the hydrophyllium is cansed ly the growth of the midille or gelatinons lizyer. pacy. l'nemmatocyst. $\delta$. liecess between the vitelline cells and the bydrophyllinm.

## S-10. Ayalma clegans. From sketches by A. Agassiz.

8. Larva a little older than the last. C. P. L. Chamber of the hydrophyllium. pr. hy ph. Primitive hydroplyylinm. pm cy. Pueumatocyst.
9. Still older larva. C. P. L. Chamber of the pimitive hydrophyllium. pr. hyph. Primitive hydroplyhlium. ut. Vitellus. Of the three buls shown in the figure, the larger is the pmematoryst, and the two smaller (lateral) the ruliments of the serrated hydrophyllia, which later assmme great si\%. \%. Vitellus.
10. Older larra, with the prinitive hydrophyllium ( $p$ r. lyy $p$.) bent over so as to hide the cavity ( $C$, $P . L$.), and expose in profile the polypite and serrated hyilophyllium. By this movencnt the puenmatocyst ( $p \mathrm{~m}$ cy.) is brought to the middle of the figure, white at its left are several buds, which later develop into hydrophyllia.
11. Agalma Siersiz. From Metschnikoff, op. cit., Pl. VIlI. fig. 11.

Profile view of a larra, in which the margin of the provisional hyirophyllium has grown downard, covering the vitellus, from which, however, it is free at the efges. The epiblast (eb.) arpears at a projection, ginerally morc or less pigmenter, which is begiming to push out at the side of the ovm. The hypoblast ( $h a$.) is also visible at the same point, and also lines the chamber C. P. L. 'flue vitelline eells are somewhat reluced in number. There are two regions of erimson pigment (pis.). The serrated hydrophyllia (ser. hyph.) are conspicuons by reason, in fart, of the large nematocysts in thir walls.

## 12-17. Ayntma cleyans. From sketehes by A. Agassiz.

12. Larva of about the same age, ant representel in the same position as fig. 10 , showing the serrated hydrophyilia (ser. hy ph.) in profile. phe cy. P'nemmatocyst. $2 \%$. Vitellus.
13. Larva, showing the relation of the primitive hydrophylium ( $m$. hyph.) and the pneumatocyst ( $m$ cy.) थ\%. Vitellus,
14. Primitive larva, seen in profile with the spongy mass of cells (2t.) hugging closely the imer wall of the epilliat. They here occupy a position similar to the sanse cells in Eluitulize (l'l. VI. fig. 13 hb ). $p^{m} p h$. l'neumatophore. pap. Small tubercles, not fignred in other figntes, and doultfully calleal purillæ. ser. hyph. Serrated hydmphyllia in profic. C. $P$. L. Clamber of the primitive hydrophyllimm now reilured to a tube. $w \%$. Vitellus.
15. Larva of the same age as the last, seen in a plame at right angles, laterally, aml from helow, inlicating the position of the large cells in the vitellus ( $v^{4}$.). or. Mouth. ma cy . l'nematocyst. scr. hyph. Serated hydmpliy?lia.
16. Older larva. iu which the size of the semated hydrophyllia (ser. Ity ph.) has greatly inerensed, and a terninal cluster of nematocysts lats appeared at the distal extremity of a tube sitnated medially in the lyydro. phyllium. mecy. Pnematocys. C. I', L. Enol of the eavity of the hylrophyllimu.
17. Larwa ohter than the hast, in wheh the primitive hedropylium has disarpeared, and the polypite has
 show its relations to the pmematoryst ( $m$ ecy ). of the small hats below it, the lowest - that with four black spots - is probably a tentacle, and the others are immature liydrophyllia.

18, 19. Agalma Sarsii. From Mctschnikoff, op. cit., P1. IX. figs. 15, 17.

18. Larra, showing the connection of the embryonic appendages (primitive hydrophyllium and serrated hydroplyylia) with the polypite and pmeumatocyst ( $p m$ cy.), by means of an axis ( $\beta$ ). Four serrated hydrophyllia are shown. The commection of the cavity C.P. L. with that of the polypite is through an enlargement (ampulla a), into which the tubes of the several hytrophyllia appear also to open. The cluster of bodies at the base of the polypite, near its junction with the pneumatocyst, are embryonic tentacular knobs (figs. 23, 24). ga. Stomach cavity. or. Mouth.
19. Larva about the same age as the last, turned in such a way that a sermated hydroplyylinm is shown in full faee. The fore-shortened extremity of the tube (C. $P . L$.) of the primitive hydrophyllium is just visible. $p^{m}$. hyph. Primitive hydrophyllium. pig. Pigment at the base of the float ( m ph.). ga. Stomach. nt cy. Nematocyst. $\gamma$. Tube of the sermated hydrophyllium.
20. Agalma clegans. From Fewkes, Stulies of the Jelly-fishes of Narragansett Bay. Bull. Alus. Comp. Zoöl., Vol. Vill., No. 8, Pl. IX. fig. 2.
"Athorybia larva," embryo with a ring of provisional serrated hydropluylia (ser. hyph.), and embryonic tentacle (cm. tu.), with a provisional (?) axis. There is a remnant of a vitellus ( ct .) which, in this species, does not pass into the polypite. Our spreies of Agalma seems to resemble Crystallodes in its methorl of absorption of the vitellus. The pueumatophore ( $\quad$ mph.) is permanent. myt. Polypite. $\gamma$. Median canal of the serateal hyilrophyllium.
21. From Metschaikoff, op. cit., Pl. XI. fig. 2.

An embryo older than the "Athorybix larva," with the serrated hydrophyllia characteristic of that stage, and with embryonie tentacle (em. ta.). It has developed two nectocalyces at least (ncx.), a permanent axis ( $a x$.), permanent tentacular knobs, two of which are to be seen in the lower centre of the fignre just ahove the letters (cm.tu.). A radial tube ( $r$. th.) is developed in the tentache, and the pheumatophore ( $p$ n $p^{\prime \prime}$.) approximates in shape that of the adult.

22-29. From Fewkes, op. cif., Pl. IX. figs. 1, 9, 93. Fig. 25, from sketeh.
22. Larva still retaining, as an embryonie feature, the provisional tentacle and knob; but in other respects like the adult. Provisional hydrophyllia lost, and in their place permanent covering-senles (hydrophyllia). Axis diviled into two parts; that which bears the nectocalyx ( $n c . s$.), ealled the nectostem, and that which bears the remaining appendages, the polyp stem ( $m$. $s$.). The permanent tentacle, with knobs characteristic of the genus Agulma, coexists with the larval tentacle (cm. th.). Hydrocysts (hycy.), with their filaments (fil. hycy.) present. ncat. Fudimentary nectocalyces. pm ph. Pneumatophore. pyl. A polypite.
23. Sile view.
24. Sen from below.
25. Outline of an undeveloped hydrophyllium, not serrated, found in a larval Agalma clegans. a. Anterior (place of attachment). p. Opposite end. v. Ventral (side turned to the axis).
26-29. Development of the tentacular knob of Physmhore hyltrostaticf. From Fewkes, Contribntions to a Kuowletge of the Tubnlar Jelly-fishes. Bull. Mus. Comp. Zoöl., Vol. VI. No. 7, Pl. I. figs. 4, 5, $6,7$.
26, 27. Young condition of the knoh. t. $v$. Embryonic vesicle, resembling the terminal vesicle of the alult knob in Ayalma. This is reduced in size, and lost in the adult Physophora. O. Enlargement of the cavity of the linob, which later grows into a canal (cn.) along the side of the coiled pat of the atult knob. $\lambda$. Point of origin of the coiled part of the knob.
28. In this figure the vesicle ( $t$. vs.), formerly terninal, has become lateral ( $l$. vs.), and the carity ( $\theta$ ) has been elongited into a canal (cm.) by the growth of the point of attachment of the coiled part of the knob to the pule opposite its peduncle, or attachment to the tentacle. iv. Involucrum. suc. Sacculus.
29. Kunh similar to that of the adult. The lateral (embryonic) vesicle is lost, the eanal (cne) tuhe-like, and the attachment ( $\lambda$ ) of the sacculus to the immer wall of the involucrum at the opposite pole to that where it formerly liung.

## PLATE VIII.

## Development of the Acraspeda. Figures from Louis Mgassiz.

B. Ul p. Blastopore.
C. con. cre. Cireular C'imal.
con. ${ }^{1}$-con. ${ }^{3}$ Constrictions which ulimately become deep emough to separate the intermediate disks as Ephyre from the Strobila.
E. cb. Epiblast.
G. ga. Stomach.
gm. Bul.
gac. Portion of the stomach, which forms a disli-shapel cavity, as distmguished from that within the oral folds.
L. lab. Hypoblast.
II. $k b$. Lip of oral tentacle.
M. man. Manubrium.
N. nel. Nucleolus.
nl. Nucleus.
O. oa. Orary.
ocy. Otocyst.
ocy. $l$. Otocyst lobe.
o cy. s. St.yle bearing the otocyst.
or. Month.
or. ${ }^{1}$ Mouth.
or. te. Otal tentacle.
P. p. Posterior pole of the planula.
py.gin. Bud forming on the side of the Strobila.
T. ta. Tentacle.
ta. 1 Tentacle of the Scylhostoma.
$t u,{ }^{3} t a .^{4} \quad$ Undeveloped tentacle.
th. Enlargement of circular panal at the junction of the ocular tube.
tu. ${ }^{1}$ Tube passing ralially from stomach to vieinity of sense organ, opening at the periphery into the enlagement ( $l b$ ) and centrally into radial tube ( $16^{3}$ ).
tu. ${ }^{2}$ Tulne passing ditectly from stomach to buadle of tentacles.
$t b^{3}$ Tube from stomach in sense oetant, before division.
$t l .{ }^{ \pm} \quad$ Centripetal tube arising from circular caural at the peripheral end, ending blindly at the other extremity.
tu. ${ }^{5}$ Tube in the lappets of the otocyst (?).
tl. ${ }^{6}$ Angle in tube ( $(6)$ which later pushes itself into the lapuet.
U. ubr. Umberla.
V. vel., vel. ${ }^{1}$ Velum.

थ., vt. ${ }^{1}$ Vitellus.
v. m. Vitellinc membrane.
a. Lim of the orifice leading into ovarian eavity.
$\beta$. Base of attaclment, also abnormal unattacheel latses.
$\beta .^{\prime} \quad$ Base of a Strobila witl large mumher of constrictions.
$\gamma$. Chitinous lasal sulpurt (perisare ?) $\zeta, 5 .{ }^{\prime}$ Gelathons portion of the umbella between two chymiferous tubes.
$\phi$. Placellen (sexual filanents).
$\phi .^{\prime}$ Phacellen, seen through the ovarian openiug.

The fignres on this plate were arranged by $\Lambda$. Agassiz.
1-9. Aurclia flaviduta, from Agassiz, op. cif., Vol. 111. P1. X. figs. 1, 2; P1. X. figs. 16, 17, 10, 20, 22, 23, 24.

## 1-21. Development of the planula from the ovum.

1, 2. Orum (life-size) from ovary. The early conditions are passed through in the ovary and folds of the mouth.
3. Enlarged view showing the yolk cells in the midalle of the ovum.
4. The vitelline cells occupy the whole vitellus (at).

5-S. Consecutive stages, with uncleus (ul) aul nucleolns (ncl). vt., w. Vitcllus. ro. m. Vitelline membrane.
9. Morula. $n$. nucleus. $v$ \% Vitcllus.

10-20. Acrasperlote melusa, Genus? These fignres resemble the stages of serguentation of Cymere. They illustrate the formation of a bistosplhere (fig. - 0 ) from an egge where segmentation has just begun.

18-19. Optical sections slowing a segmentation carity. After fig. 20 is reached, the outer wall (epiblast?) there is but a single wall to the blastosphere - of the blastosphere folds inward, forming in Chryscora a gastrula.

21-49, from Agassiz, op. cit., Vol. III. Pl. X. figs. $4,4^{a}, 10,10^{a}, 12,14,14^{a}, 14^{\circ}, 19,26,35,36^{a} ; \mathrm{Pl}^{2}$. $\mathrm{X}^{\mathrm{a}}$. figs. $2,4,10,11,13,19,22,25,28$; Pl. X1. 6, 19, 20, 29 ; Pl. X1'. figs. 5, 10, 16, 17, 20.

## 21-33. Development of the Scyphostoma from the planula.

21. Plannla of Aurelic.
22. Pyriform planula with a blastopore (bl $p_{0}$ ), In Chryscora, accorling to Claus, after the formation of gastrula the blastopere closes, forming a closed sac. In Agassiz's figures it remains open, and forms the month of the Scyphostoma. The relationship of the mouth and inner cavity of the gastrmla remains donbtful. \% l'ole orposite the blastopore.
23. Still more elongated plamula, resembling that of the IIydroidn. blp. Blastopore. p. Posterior pole.
24. The planula has attached itself at $\beta$, and begimings of seweral organs of the Seyphostoma have appeared. bl p. Blastopore. cb. Eliblast. ga. Stomach cavity known as stomodrun. hb. Hypoblast (ln Chrysaora infolded "piblast of the blastosphere forms the hypoblast, whose origin in this genus is unknown. ta. Tentacles.
25-26. Two other attached planule. Fig. 25 has a wide-open blastopore (bl p) leading into the stomach (ga), and fig. 25 retains its cilia. $\gamma$. Ring of perisare at the base of attachment.
25. Fixel larva with two tentaeles ( $\left(a^{1}\right)$ and month $(b l p)$. cb. Fpihlast. $h b$. 11 ypoblast.
26. An almormal attached larva. bl p. Blastopore. cb. Epiblast. ga. Stomach. hb. Hypoblast. $\beta$. Base of attichment.
27. Scyphostoma with four tentacles. bl p. Month. $g x$. Stomach. ta. ${ }^{1}$ Tentacles. In Chryscora, between this stage and a following, there form in the cavity of the stomodieum in intermediate planes as respects the tentacles four ridges, thickenings of the hyphlast, which grow in such a way as to divide the cavity into four chambers, as in a young Actinozoan.
28. Older Seyphostoma. blp. Mouth. cb. Epiblast. hb. Hypoblast. $\beta$. Basal attachment. Tentacles probably solid hypoblast.
29. Scyphostoma with eicht tentacles. bl p. Month. cb. Epiblast. ga. Stomach. hb. Hypoblast. $\beta$. Attaclunent. $\gamma$. Perisarc.
30. Scyphostoma with mouth (or ${ }^{1}$ ) mounted on a protuberance rising in the midst of the circle of tentacles $\left(t a^{1}\right)$. The oral region is bent over towards the observer, in order to show the oral prominence.
31. ${ }^{1}$ Nematocyst from tentaele.
32. Seyphostoma seen from the side. bl p. Mouth.

34-40. Development of the Ephyra from the Strobila.
34. A Strobila with its first constriction ( $c^{1}{ }^{1}$ ).

34'. Attached larva with a land ( gm ) from its basc.
35. A larva begiming its second constriction ( $\mathrm{cm}^{2}$ ). con. ${ }^{1}$ First constriction. 1-2. Disks constricted from the Strobila, later to separate from the fixed larva as Elhyre.
36. A larva begiming a thirl constriction (con ${ }^{3}$ ). con. ${ }^{1}$ - First constriction. 1-3. Constricted disks. ta. ${ }^{1}$ Tentacles. $\beta$. Base of attachment, and apmenlages near by.
36'. A deformed Strobila.
37. Upper portion of a Strobila with five constrictions (1-5). ocy. Otocysts (?). or. Month. py. gm. Bud from the side of the boly. ta. Tentacle. $\beta$. Base near attachment.
38. Showing a Strobila just breaking its attachment of the Ephyra, whose mubrella (ubr) is reversed. The axial attachment (man) becomes the manubrium of the Ephyra below it. 1-3. Three attached Ephyre. or. Month. tel. Tentaeles not the same as tet (fig. 27). B. Base.
39. A Strohila with its second row of tentacles (fu') present and the transitory tentacles of the Scyphostoma dropleed. There are $13(1-18)$ constrictel disks, of whicl the upper ( 1 ) is we oldest. ocy. Otocyst. ocy. lb. Otocyst lobe. ta. Position of future tentacle. $t a^{\prime}$. Second set of ten'acles. $\beta$. Base.

## 40-49. The Ephyra.

40. An Ephyra in yonngest condition, derived from a strobila with "false" decidnous tentacles, and probahly the first lisk to fall olf. ocy. Otoryst. ocy. $l$. Otoryst lohe. ta. The longer of the appendages marked ta is probahly a "false" tentacle, which has not yet fallen off. The other may lee the true Ephyra tentacle. ubr. ['mhrella.
41. Profile view of an $\mathrm{E}_{\mathrm{p}}$ hyra in which the mouth ( m ) with its $\mathrm{l}_{\mathrm{j}} \mathrm{s}$, and the veil ( vel ) ? are well developen. man. Manubrium. ocy. Otocyst. ubr. Umbrella.
42. Eplyra with umbrella (ubr) thrown back, leaving the manubrium (man) projecting ontwanl. ga. c. Gastrie chamber (in this early stage only a part of the stomach). ocy. Otocyst. th. Tube to the otocyst from the gastric chamber. th. ${ }^{1}$ Tube from the gastrie chamber to the region from wheh the tentacles later arise.
43. Eplyyra of ahout the same age as the last from the aboval side. gat. c. Gastrie elmamer. or. Mouth seen through the body walls. tb. ${ }^{1}$ Trintacular tube. 16. ${ }^{2}$ Tube to the otocyst.
44. An older lephyra scen from the oral sidr. ga. c. (iastric chamber. ocy. Otoeyst. or. Mouth. tb. Tentacnlar tube $t b .2$ Ocular tube. vidr. Vmlirella.
45. A sense octant (from oral silu) of an liphyta of about this age. ocy. Otocyst. ocy. s. Stalk upon which the otocyst is carried. tb. Chymiferons tube from gastrie chamber to the rerion of the hell margin from which the tentacles arise. $t 6 .^{2}$ Tube to tho peluncle of the otocyst. $t b .{ }^{5}$ Blindly emping tube. $t b .^{6}$ Enlargement of ocular tube.
46. Quadrant of an Ephyra (oral view), older than the last in which the clusters of tentarles are formel. can. cre. Cireular eanal. ga. Stomach. lab. Lips. oa. Ovary. ocy. Otocyst. or. Mouth. ta-ta. ${ }^{6}$ Tentacles. $t b-t b .{ }^{6}$ Clymiferons tubes. vcl: Velum. S, 5.' latervals of muscular lower tloor separating tubes. The eircular muscles are seen at $\xi^{\prime}$
47. ${ }^{1}$ Ovarian opening. oa. Ovary. $y$. Portion of bell-wall near ovary. a. lim of opening. $\phi$. Phaeellen (sexual filaments). $\phi .{ }^{\prime}$ Plawellen, seen through opening.
48. Profile view of a young medusa, oller than the Ephym strictly so called, with bell expanded. ocy. Otocyst. or. Mouth. or. (ta. Oral tentaeles. ubr. ए1!
49. The same with bell-walls contracted. or. ta. Oral tentacles.
50. Oral view of a young medusi older than the Ephyra, lut without tentacles.

## PLATE IX.

## Development of the Ctexophors. Fiyures from Alexinder Agassiz, and Carl Chun.

B. blp. Dlastopore.
E. cb. Epiblast (?) A superficial layer of "small cells."
cb.t. Tentacular bulb, an eminence formed in part of eqiblast, which later develops into a tontacle.
G. $g \alpha$. Stomach.
ga. ${ }^{1}$ Stomodieum.
Il. $h b$. Hypoblast.
L. $l t b$. Lateral tube.
O. ocy. Otocyst.
ol. Otolith.

| or. | Month. |
| :--- | :--- |
| P. pig. | Pigment. |
| p pl. | Layer of protoplasm (?) |
| S. sylu. | Funnel. |
| T. to. | Tentacle. |
| V. vt. | Vitellus. |
| vt. cl. | Vitelline cells, "cell masses." |
| $\zeta$. | External envelope. |
| $\eta$. | Swimming flappers. |
| $\theta$. | Polar elevation of protoplasm (?) |
| $\omega$. | Prominences of the body walls on |
|  |  |
|  |  |

or. Month.
P. pig. Pigment.
ppl. Layer of protoplasm (?)
Fumel.
T. ta. Tentacle.
. vt. Vitellus.
ct. ct. Vitelline cells, "cell masses."
5. External euvelope.

ๆ. Swimming flappers.
o. Polar elevation of protoplasm (?)
$\omega$. Prominences of the body walls on each side of the otocyst.

Figures 1-33 on this plate were arranged by A. Agassiz.
1-37. From Agassiz, Embryology of the Ctenophore, Mem. Acad. Arts and Sciences, Vol. X. No. IIl. Pl. I. figs. $1,2,4,5,8,12,17,18,28,29,31,37,38$. Pl. IV. figs. $8,19,23,25,28,32,34,38,42,45$. Pl. V. ligs. $1,2,3,5,6,7,12,15,18,19,26,27,29,30$.

> 1-8. Beroë (Idyia) roseola.

1. Ovum of Beroë just after feeundation. The ovum is surrounded by a transparent envelope ( $\zeta$ ). ppl. Layer of granular protoplasm. vt. Vitellus.
2. First change in the ovum by which the "germinal layer" is concentrated at and about one pole, "the formative pole" ( $\theta$ ). The envelope $\zeta$ is gone. $x t$. Vitellus.
3. Somewhat older ovau with a prominent projection of the protoplasm at the pole ( $\theta$ ). vt. Vitellus. If the eminence $(\theta)$ be seen from a plane at right angles to figure 3 , two prominences appear.
4. An embryo in which the projection has increased in size, and been deeply divided by a transverse furrow. Each elevation is lettered e..${ }^{1}{ }^{1} \mathrm{vt}$. Vitellns.
5. The furrow has deepened in this stage, so that the yolk is divided into two masses. The protoplasmic superfieial layer extends over and surrounds them both. The deep slit is the Irosition of a gastric cavity (ga'). cb. Epiblast (?)
6. The "bent dumb-bell stage," in which there are four yolk masses, the additional pair formed from the last by a fresh plane of segmentation. The pairs last formed are nnited by a bridge, as shown in the figure.
7. Embryo with four large vitelline masses, which will hereafter be lettered $v t$. cl., and as many epiblastic prominences ( $c b$ ).
8,9. Dumb-bell stages of Pleurobrachia rhododactyla, seen from oral side, divided into eight vitelline masses. $c b$. Epiblast. vt. cl. Vitalline cells.
8. Feroë roscult, "Side view of (the) yolk-mass, in which the actinal segmentation of the smaller cells has commeneed to form sixteen mequal masses." Agassiz.
9. An embryo with smaller spheres (eb) more mmerous. vt. ct. Vitelline sphercs.
10. "Yolk-mass seen from the actinal pole; the masses are arranged round a vertical axis, each small mass forming a small overhanging projection, at the extremity of which the germinal layer is concentrating, preparatory to a rapid segmentation, to he accomplishel as in earlier stages of segmentation." Agassiz. cb. Epiblast. ga. ${ }^{1}$ Gastrula cavity. vt. cl. Vitelline eells.
11. Limbryo iu which the smaller cells of the outer layer have undergone further division.

## 14-37. Mcurobrwhien rhotoluctyla.

14. Embryo of Pleurobrachice of about the same age, showing the ridative position of the larger and smaller cells.
15. I view of the same from the (oral ?) (actinal) axis. 'Ilare is a combion in dilfernt authors as to these two regions of the embryo.
16. Ohler embryo of Pleurobruchic, showing the "atinal trinh " (?) in prohle. eb. Epiblast. ga. Gastric cavity. et. el. Vitclline masses.
17. A schematie section, showing the relation between the eavity gen, tha layer of small eells eb, and the vitelline masses ( $1 \%$. c\%) bl p. Blastopore.
18. Fublyo of Pleurobrachiu, secu from the pole on which the bastopore (bl $p$ ) opens. cb. Outer layer of suall cells.
19. An cunbry of the sane, of about the same age as the last, seen from the opposite pole. cb. Small cells. ct. ct. Large cells.
20. Dlorula in which the small cells have ahmost comperely enveloled the vitelline mases.
21. Au embyyo showing the first elevation of "piblastic cells to fom an otocyst (ocy). eb. Epiblast. v.cl. Vitelline cells.

2?. Embryo older than the last, showing an infolling of the outer walls to form a stonach (ga). eb. Epiblast. e.b. $t$. Prominence of the "pillast at the points where the tentacles liter appear.
23. Au embryo of about the same age as the last, seen from the actinal pole (oey).
24. Profile of the embryo in which the stomath cavity has formel. From A. Agrassiz's account it seems that a part at last of the gastric eavity is hollowed out among the vitcllime ectls. This is the region of the funmel or the upper part of the eavity (gir). The lower portion or the trat stomach is formed as a gastrular invagination of the epiblast. As intepheted by lalfone, the alinentary canal of the ('temophere would le made up of two sections: (1) a true liypoblastie section, consisting of the infundibulum, ame the gastrovascular canals lerived from it; and (2) an cpiblastic scetion - the stomodienm - furming the stomach.
25. Older larva in which fonr otoliths (o? have formed. cb. 1. Tentacular prominence. $\eta$. low of vibutile happers.
26. The same, a little older, scen from the actinal pole. ol. Otolith.
27. Still older embryo. cb.t. Tentacnlar prominuce. gri. Stomach. of. Otolith.
28. Older larva. The otocyst is well formed, and the first of the two sections of the alimentary eamal, mentioned above, has begun to have definite walls. ghe, Stomach.
29. Tiew of a larva yomger than the last, seen from the actinal pole. cb. t. Tentacular mominence. ol. Otulith.
30. An older larva with tentacles still move daveloped. Otoliths (of) hronght close tongether into an otoryst (ocy). ta. Tentacle.
31. Still older larva, seen from one side, in which the tentacles are well formel. gr, Stomach. sph. Funnel.
32. Ohler larva. gu. Stomach. sph. Funncl. (u. Tintacle. $\eta$. Ruw of locomotive flaprers.
33. View of a slightly older larra showing a tentacle on the middle line. Dr, Month. $\eta$. Row of loeomotive flappers.
34. Nore advancel embryo. or. Mouth. $\eta$. Vibratile llappers.
35. Side riew of a larva a little older than the last. gre. Stomach. ocy. Otocyst. ol. Cluster of otoliths. ia. Tentacle.
36. More mature embryo than the last (sile view). (gf. Stomach. or. Mouth. ta. Tentacle. $\eta$. Vibratile flappers.
37. The same in another plane. ga. Stomach. or. Month.

38-40. Cullanira bialute, Delle Chiaje, from Can Chun, Fauna und Flora des Golfes ron Neapel, I. Mono. graphie: Ctenophores. FI. 111. figs. 1, 2, 3.

3S. Larra before the formation of the lobes of the boly on each side of the otocyst.
39. Sile view of the same or an older larva. gft. Stomach.
40. An older larva, with begimings of the wing-like extensions of the boly $(\omega)$. l. th. Lateral tube. $\eta$. Vibratile flapper.

41-45. From Chun op. cit. Pl. Vill. fig. 18. I'l. 111. fig. 8. Pl. V111. fig. S. Pl. Xilvi. figs. 9, 10.
41. Larva of Ghiage (Eucharis) multhornis. hb. Hypoblast. $\eta$. Position of the vibratile flapuers. The thin layer which embaces the whole embryo is the epiblat, and the infolded region at the lower pole is the linture mouth. Liows of combs should be represented at $\eta$, and on the correspoming opposite side, while a lime indicating the lower edge of the moath shombl comect the two prominenees at the lower pole.
 Lumen of the hyroblast. This cavity in the centre of the larva is the beginning of the future funnel. $\eta$. liow of ribatile flappers. ocy. Otocyst.
43. Larva of Hormiphora plumosa, gen. Ag. sp. Sars. gu. Stomach. l.tb. Lateral tube. ocy. Otacyst. or. Mouth. sph. Funnel.
44. Lmbryo of Beroë rufescens, Forsk. (Furskionlea, Chun.) l.tb. Lateral tube. ol. Otolith. The otocyst is not yet formed about the otolith. or. Mouth.
45. Larva of the last named, which has reached sesmal maturity. ol. Otolith alrealy enclosed in its otocyst. or. Mouth. pig. Pigment.
46. Beroé roseola, from Agassiz, op. cit. Pl. III. fig. 18. Embryo seeu from "abactinal" pole. ol. Otolith. $\eta$. Row of vibratile flappers.
47. Beroë rufisechs, from Chmn, op. cit. Pl. XIVa. fig. 11. Larva secu from ouc side. ocy. Otocyst. or. Month. $t b$. Chymifcrons tubes.

48-50. Beroë roscola, from Agassiz, op. cit. Pl. III. figs. 19, $20,22$.
48. Larva somewhat older than that shown in figure 47, in which the two clymiferous tubes, under the combs nearest the medial line of the figure, have pmshed their way to the vieinity of the mouth. ga. Stomach, which oeeupies the whole bodly eavity. or. Mouth. $\eta$. Vibratile flappers.
49. View of an older larva, seen at right angles to the last. The two tubes, which in fig. 48 were represented as approacbing the mouth, have in this united, forming a ring about it. The other tubes are advancing to the labial region. ga. The whole cavity of the larva forms a stowach; the portiou marked (ga) one of the tubes of the body walls. ocy. Otocyst. $\eta$. Vibrating flapper.
50. Larva of Beroë rosevla. ga. Stomach. o ey. Otocyst.

## PLITE X.

## Development of the Ctexopiora, continued. Figures from Carl Cifun and J. Walter Femres.

A. adr. tb. "Adradial" chymiferous tule. The aulaulial tube passes to the short rows of flitpers. It arises from the ithterradial tube.
mur. ${ }^{1}$-aur. ${ }^{4}$ Auricles.
C. cil. Cilimm.
cil'. Tult of cilia before elosure of otocyst.
E. $e x^{2}$. $c x .^{2}$ Extermal openings from the fannel, prolably exeretory.
$c x . l$. $t b$. Extemal lateral tube bounding the lower rim of the body lobes ( $(6)$.
G. ge. Stomach.
gft. cn. Bifurcation of the stomach tube.
ga. sch. Magengefässschenkel.
ga. tb. Stomach tube.
gaw. Appendage to the stomach.
If. hio. Hypoblast.
$h b,{ }^{1} h \not Z^{2}$. Largr hypoblast eclls.
$h b^{3}$., $h b^{t}$. Beginning of the elymiferous system of ressels.
I. i.l.tb. Internal lateral tube.
i.r.tb. Iuternal radial tube.
L. $l$. Boly lobes. l.mu. Lateral miseles.
15. mg.w. Meclian gelatinous prolongation near the otocyst.
mu. Muscles.
mu.cre. Muscles surrounding the stomach.
N. $u .-\mu .{ }^{8}$ Nerves.
$n c$. Norre centre
O. ocy. Otocyst.
ol. Utolith.
or. Month.
$P$. per. cm . Liatial canal hefore division.
S. sch. Tentacular cover.
s.gw. Gelatinons elevations on the side of the otocyst.
sph. Funnel.
sphl. tb. Tubulin region of the funnel.
T. tro Tentacle.
$t b .-t b^{8}$ Chymiferous tube extending to the tentacle.
X. $x$. Junction of three chymifrrons tubes.
5. $y .^{2}$ ) Line of the internal wall of the lobe
$\left.y .{ }^{3}\right\} \begin{aligned} & \text { at the point where the chymiferons } \\ & \text { tubes seem to eross it. }\end{aligned}$
Z. $2 . .^{1-\sim^{4}}$ Junction of tubes at base of auricles. $\eta .-\eta{ }^{8}$ Vibratile flapprers.
$\theta$. Simple division of chymiferons tubes without tentacle in genus Ocyroë.

1-19. From Clum, op. cit., Pl. II. figs. 9,10 ; Pl. VII. figs. 1, 4, 6, 11 ; Pl. Vlil. fig. 4 ; Pl. IX. figs. 3, $4, \mathrm{~s}, 15,16$; Pl. XIl. $3,4,6,7,8,11$.
1-10. Development of Chiuja (Eucharis) multicornis.

1. Segmentel ovim, showing the larger cells, "vitelline cells" within, surroundel by smaller cells of epiblast. The opening through whieh the larger eells appear is a blastopore.
2. Embryo in which the epiblastic cells have almost completely closed the opening (bld) seen in figure 1. The remains of this orifice appears as a long narow slit.
3. Ontical section of the gastrula.
4. The gastral month now completely closes, and the wall of the epiblast begins to infold to form the future mouth and stomach.
Embrgo in which this infolling has assumed considerable size, ond in which, also, the tentacular prominences (la) have begun to form. Au otocyst is already formed, while a single otolith is represented in Chun's figure, which has not yet grown into the otocyst. The investing layer is the cpihast. hb. Endoderm, lypoblast. At the point mue is the begiming of the muscular layer which later becomes very prominent. $\eta$. Vibratile row of flappers. cil'. Tufts of cilia.
5. Still older larva in which the size of the layer between the outer thin epilhast and the larger eells, hypoblast ( $h b^{1} ., h b .^{4}$ ), has increased greatly in size. In the latter the star-like muscular cells ean be seen.

This layer is an emomous growth of the layer designated by the letters mu. in firgue 4 . cil Cilia at the actinall pole. or. Montli. (a. 'Jentacle. At $h b .^{3}, h b .^{4}$ hegin to arise saes, which later develop into the cireulatory-tube system. The tube $h b .^{3}$ is best marked of these. $h b .^{1}, h b .^{2}$ Remains of the original large eells.
6. Sexnally mature, "Cydippe-formed larva," of Chinje (Euclearis). At the peripheral extremity of the cight tubes (edr. th.) are swollen cavities, fillem with sexual products. These lie just beneath the rows of combs or vibuatile flappers. adr. tb. Adtalial tube, ultimate division of the chymiferous tubes, which extend to a meridional tube below the rows of llappers. ga. Stomaeli. ga. tb. A chymifirous tube, in this stage ending blinuly in the bell-walls, and called the stomaeh tube from its relation in position to the stomach. i.r.tb. Internal radial tube. There are four of these which arise from the base of the funnel and paeh diviles iuto two adradial tubes (uli. th.). $n .^{4}, n^{5}$ Nerves. sph. tb. Tube of the fumel, which spurads itself ont at the uper pole (sph. $1 b_{0}$ ) under the norve centre ( $n c$. ) Above the nerve centre is the otocyst witll its otoliths.
7 A larva at abont the same stage, seen in a plane at right angles to the last. $g^{2}$. Stomach, here seen in protilc. adr. th. Adradial tube. ga. th. Stomach tube arising from the fommel $\left(s_{p}, h_{\text {. }}\right)$. i.i:tb. Internal malial tube. $n .{ }^{2}, n .{ }^{3}$ Nerves. n.c. Nervons centre. ta. Tentacle. ta. tb. A tube, which passes directly to the tentacle from the funnel. $16 .{ }^{2}$ A bindly ending, meridional tube under a row of vibratile flappers. $\eta{ }^{ \pm}$Row of flappers. 7h. Rudimentary lobes.
8. View ol a Cydipme-like larva of Chiajue (Eucharis) from the actinal pole. adr. tb. Adradial tnhe. cax, ${ }^{1}$ ex. ${ }^{2}$ Exeretionary (?) opening. ga. Stomaeh. n. Nerve. tb. $-1 b .8$ Chymiferons tubes. per. ch. Camal arising from the base of the fummel before its division into the interadial tubes, ta. Tentacle.
9. Somewhat older larva from the actinal pole, in which the chymiferous tubes have joined in the hell-walls.
 internal tube (il. th.). gre. Stomach. ga. sch. Magengefasschenkal. ga. tb. Gastrie tube seen in section. i.r.tb. Internal malial tube. ta. Tentacle. $\quad z^{1}-z^{4}$ Point of bifureation of the tube whielu skirts the amricle.
10. The same seen from the side. adr. tb. Adradrial tube. aut. ${ }^{1}$, aur.2 Auricles. $c x .7$. th. External tube of the boly lobe. gr. Stomach. grn. sch. "Magengefissschenkel." gow. Sac-like appemlage to the stomach. i. 2 , th. Intemal radial tnbe. $1 b$. Fody lobe. my. $w$. Medial gelatinons elevation near the otocyst. n. Nerve. acy. Otoeyst. ta. Tentacle. to. tb. Tentacular tube. $y . .^{2}, y .{ }^{3}$ Imer wall of the body lobe, seen in profile. $\eta \cdot{ }^{3}-\eta .{ }^{6}$ Rows of vibratile flappers.

## 11-17. Development of Cestus IFneris.

11. Fonng larva of Cestus, seen from one silc. $g x$. Stomach. $g(x . t b$. Tuhes one on cach sille of the stomach. u. ${ }^{1}-n .{ }^{*}$ Nerves. or: Mouth. sphe. th. Tube of the limnel. $10 .{ }^{1}-t b{ }^{4}$ Cliymiferous tubes. $\eta$. Vibratile flapper:
12. View of the "Cydippe-formed larv" from the actimal pole. gre. Stomach. ga. tb. Stomach tuhe. i.r. th.
 erons tubes. ta. Tentacle. $\quad t)^{1}-t b .^{8}$ Chymiferous tubes.
13. Still older larva ("yblipe form"). gie. tb. Stomach chymiferous tnbes. mut. cre. Circular museles. u. ${ }^{1}-n .{ }^{4}$ Nerves. ocy. Otocyst. or. Mouth. syh. Funnel. sph. tb. Tube of the fumbel. ta. Tentacle. tb. ${ }^{-}-t b .4$ Chymiferons thbes below the flappers. These have begun to extend downwarl, but in this stage are blind ending.
It. Larva of "Cydippe form" in which the tubes (tb.) have grown downward towards the oral pole. (View at right angles to fig. I3.) adr. tb. Almalial tube. ga. Stomach. gr. th. Gastric tube. ga. cu. Beginning of a bifuration of the extremity of the gastric tube. n. c. Neryons centre. sph. Fumnel. to. Tentacle. sph. th. Tube passing from the fumel to the otocyst. th., th. ${ }^{4}-t b_{6}{ }^{6}$ Clymiferous tubes, extending meridionally in the bellwalls. $\quad \eta .{ }^{5}, \eta .{ }^{6}$ Vibratile flappers.
14. Ohler larwa than that known as the "C "ypupe form "(suen in the same plane as fig. 14 ). ga. Stomaeh. gr. $t b$. Gastric tube gr. Sac-like appendage to the stomach. mogro. Gelatinoms clevation near the otocyst. m. Nerve. acy. otocyst. $16 .{ }^{3}$ Chymiferous tube fomed by the junction of two opposite tubes (tb., and tb. ${ }^{6}$, fig. 14). $1 b_{0}^{4}$, tb. ${ }^{5}$ Two clymiferous tubes.
15. An older stage in the development in which the chymiferons tubes $\left(t b .^{4}, t b .^{5}\right)$ have joined $t b .^{3}$ at $x .{ }^{2}, x .{ }^{3}$ ge. Stomach. i.i. th. Internal radial tube. sph. th. Tube of the fummel.
16. Olide embryo, in which the larva has become more elougated and band-sliaped.

1S, 19, Thoë peradoret, Clum.
18. Larva (?) of Jampetia pancerince, Chun, with single tentacle (view showing the tentacle on one side). fr". Stomarh. $n c$. Nerwons rentre. seh. Tentarulitr sheath. $\eta_{0}^{1}-\eta_{0}^{*}$ Lows of vibratile flappers. tb. ${ }^{3}$, th. ${ }^{4}$ chymiftions tubes muder flat lyers $\eta .^{3}$ and $\eta .^{4}$
19. The same larva seen at rifht angles to the plane of the last. gfo. Stomach. gat w, sac-like gastral appendage. $n c$. Nerve center. sph. Fmmel. seh. Teutacular sheath. ta. Tentacle. ta. sec. Tentacular sac.
20. Lampa of Ocyroë crystalline lang, fimm Fewkes, Notes on Acalephs from the Tortugas, with a Deseription of New Genera and species. Bull. Mes. Comp. Zool. Vol. LN. No. 7. Pl. 1. fig. 2. adr. Ub. Mhadial tube. aur., ${ }^{2}$ ater: ${ }^{2}$ Amricles. ex.l.tb. External lateral tube. gif. Stomach. gif. th. Gastric tule. i.l.tb. Internal lateral tube. lb. Lobe of the body out-stretehel. l.mu. Muscles. ocy. Otocyst. or. Mouth. sph. tb. Tube extembing from the fimmel to the otocyst. $\eta$. Vibratile Happer.

## PLATE XI.

Development of Zoantharin (Actinines). Figures from Henri de Lacaze-Duthiers, A. 0. Kowalevsit, Étienne Jourday, Oscar Hertwig und Riciard Hertwig, and Angelo Andres.

| bld. | Blastoderm. | om. | Orum. |
| :--- | :--- | :--- | :--- |
| cil. | Cilia. | or. | Mouth. |
| cc. | Ectodcrm. | pcs. | Foot. |
| cn. | Entoderm. | phx. | Pharyn. |
| g. | Germ. | phx. suc. Plaryngeal sac. |  |
| g. vs. | Germinative vesicle. | phx. sul. Pharyngeal groove. |  |
| lg. mu. | Longitulimal muscles. | sg. cav. Segmentation cavity. |  |
| mb. pa. Membrana propria. | te. | Tentacle. |  |
| mat. | Mesenteries. | tc. cap. | Testicular eansule. |

Arabie numerals are used to imlicate the order of appearance of the mesenteries.
The Greek letters show the order of the fomation of mesenterial chambers and the order of the succession of the tentacles $u_{1}$, to the stage with 12.

1-25. Actinia mesembrycnthenum. From lacaze-Duthiers, Développement des Coralliaires. Premier mémoire. Actiniaires sans polyper: Arel. de Zool. exp. et gén., Tom. I. 1872. Plates XI.-X1II.

1. A portion of an exclusively female mesenterial fold or septum, showing eggs with the germinative vesicle, and also dark, deeply colored germs no longer possessing a germinative vesicle.

Note. - In the original, more extensive, figure the eggs are shown to be often arranged in series. In the opinion of the author, this appears indieative of their common origin.
2. A highly magnified spermatozoün.
$2^{\text {a }}$. Cells from the interior of a testicular capsule, in the condition in which they are found when they aro mingled with mature spermatozoa.
3. One of the reniform testicular eapsules from a male mesenterial fokl, rupturing and allowing the escape of a stream of spermatozoa. ${ }^{\text {sing }}{ }^{1}$.
4. A germ at the time of its escape from the ovary. It appears bristling with prickles, which it afterwards loses.
4a. Portion of the extermal layer of the same, more highly magnified. ${ }^{5} q^{2}$.
5. (.lt the bottom of the plate near the middle.) A gem in which there is a central deeply-stained mass (entoderm), and a peripheral layer (ectoierm) scarcely rose-colored. The depression which will be the month is indicated by or. The cilia are more strongly developed at the ahoral ${ }^{\text {orle }}$. The striate anmearance of the outer layer is caused lyy the presence of nematocysts wheh have begun to be developed in it, as well as by the cilia. About ${ }^{10}{ }^{3}$.
6. An embryo seen in profile, and already presenting one partition (septum) indicated by a rertical line.
7. The same as the last ; view of the oral pole. The mouth is elongated in the manner of a button-hole, the long dimeter of which is prependicular to the two septa, marked 1 , which have divided the central mass of the embryo into unequal potions, $\alpha$ and $a^{\prime}$.
8. A slightly more adranced embryo seen from the side. The partitions, and especially the oesophageal prolongation, eause the appearance at this point of the transversely oral cavity.
9. A inore alvanced embryo, in which a second pair of partitions, 2, are visible.
10. Embryo showing plainly the division into four compatments. The chamber $a^{\prime}$ is already removed from the pratition, l, which gave origin to it; the chambers $\beta, \beta$ form with $\alpha^{\prime}$ a group of three lobes rpresenting the greater of the two original chambers.
11. The same as fig. 10 , seen in profile. The resoplangus (pharyngeal sae) descending from the mouth is already well formed, and the chambers to the mumber of four are also well limited.
12. An embyo muela lager than the preceding. The small compartment (a) is divided into three by the pair of partitions, 3. The comprartment $\beta$ of fig. 10 is also divided alrealy into two ( $\beta$ and $\delta$ ) by the appearanee of the partition, \& Of the 8 septa thus acpliret, the pars mumberel 1 and 2 are always more developeal than the others.

Nore - The order of development of the "sphta" 2 and 4 is clamed by the brothers Hertwig to lave been interchanged, so that the trus order of their appeatunce would be indicated by the numbers in parentheses. Compare explations of ings. 31,35 , and 36 .
13. Profile view of the preceling, showing the mouth surromded by 8 compartments with rounded lases.
14. Thus same as in the two preceling figures, but the progress of the partitions being more considerable, the division into $S$ compartments is more distinct ; the partitions, 1 , are still much more advanced ; they alrealy reach the central pad surromeling the mouth (peristome), and consenuently begin to indicate the primitive division into halves.
15. An cunhyo in which the 8 complete partitions have reachel the peristome.
16. Emhryo with 8 divisions showing the partitions, 5 , well adxancel, and the beginning of the partitions, 6 , in the lobe $\gamma$. The two new chambers thus formed are respectively $\epsilon$ and $\xi$.
17. One of the various forms which the embryos assume when in motion.
18. The same as fig. 17. It has been compressed a little to show the "septa" or mesenterial folds ( $m$ nt.). Only two of the intter $(1,1)$ present the beginnings of the craspeda, or mesenterial filaments; they are the primary follds. ${ }^{15}$.
19. An embryo represented with the form which it assumes when it swims rapidly. The tuft of eilia at the pelal pole is consilerably elongated. $\frac{i 5}{1}$.
20. Profile view of an embryo. The month is supported on a snout-like prolongation, and the primitive chamber $a^{\prime}$ has begun to send forth a tentacle. 1, Primary fold with mesenterial filmmentightly developed. ${ }_{1}^{25}$.
21. Embryo further developed than the preceding, exhiniting already eight tubereles, which are the beginnings of the tentacles of the eight chambers lirst formed. ${ }_{1}^{25}$.
22. Oral aspect of a young actinia already appraching the form of the adult. The 12 tentacles of the first formation are already produced. The period of equalization in sixes, taken altenately, is in process of accomplishment and transforms the special embryonic form into one with regularly ralial symmetry. The two cyeles already begin to apprear. The group of 7 lobes which has as its centre the telatarle $a^{\prime}$ is always distinguishable by the size of the latter, and by the development of the mesenterial folds, $1 .{ }_{8}^{8}{ }_{1}^{0}$.
23. Young actinia with two well-promomeed eycles. The limits of the pedal disk are well maked, although the movements of the animal are still very lively, and the tuft of pedal cilia is very long. $1_{1}^{\circ}$.
24. Fonng actinia alrealy attached, viewel from the oral pole. In the interwals between the tentacles of the first eycle $\left(a-\xi, \zeta-\epsilon\left(\xi-\delta\right.\right.$ ? ), $\left.\delta-a^{\prime}\right)$ there begin to be formed six new pairs of young tentacles, which increase the total number to twenty-four.

Note.- Of the three tentacles occupying each of the intervals ( $a-5, \xi-\delta$, etc.) the middle one out-strips the other two, replacing (in size) $\gamma, \epsilon, \beta$, ete, ant thus the millde ones come to constitute the second cycle. The third cyele is then composed of the remaining 1 (smallest) tentacles, whith occupy the intervals between those of the first two cycles, thus regularly alternating with them. The subsequent increase in the number of chambers - and later, in that of the corresponding tentacles is accomplished by the prolnetion of a puir of elements (mesenteries) in each of the 12 chambers above which are placed the smallest tentacles; and by a process of substitution similar to that just deseribed the middle ones of the three compartments (tentacles) thas formed comes to constitute the third cyele, while the two on either sile of it beeone members of the fourth cyele. The fifth cyele is formed in a similar manner. "Sinee after the formation of each fresh cycle, the arrangment of the tentacles again becomes symmetrical (in sixes), it is obvious that all the equal-sizecl cyeles except the first are formed of tentacles entirely heterogencous as to age."
25. Face view- from the side of the seven-chamberel group-of a young actinia with twenty-four tentacles,

26-31. Actinia (sp. ?). From A. O. Fowalevsly, Observations on the derelopment of the Celenterata. From the Publieations of the Imperial Society of Friends of Natural Scienees, Anthropology, and Ethography. Moscow: Katkov, 1873.4 to, $36 \mathrm{pp} ., 8 \mathrm{pl}$. (Tussiau.) Pl. IV. ligs. ]-5, 7.
25. The rago after its segmentation.
27. Infolling of the blastoderm.
28. Invagination completed.
29. Later stare in which the mouth-opening appears as a narrow slit and the first pair of mesenterial partitions has arisen.
30. Radial section of the germ which is represented in fig. 29.
31. Radial section of a more advanced germ. The pairs numbered (2) and (3) constitute the second series of mesenterial septa, the single septum, (4), arising later ; a corresponding single septum (not shown in the figme) arises dianetrically opposite ( 4 ).

Nore. - The munbers in prentheses indicate the order in which the brothers Hertwig claim that the selita must have arisen, the septum numbered (t) being in their opinion really a pair of septa. Compare figures 35 and 36 .

32-34. Actinia equina. From Étienne Jourdan, Recherches zoologiques et histologiques sur les Zonathaires du Golfe de Mlarseille. Aun. sci. nat., sér. 6, zool., Tom. X., Art. no. 1. Oct. 1880. Ill. XVI. figs. 11i, 118, 120.
32. Longitudinal section, showing the seeondary infolding to form the resophageal tube ( $p \pi x$ ). ${ }^{2} 30$.
33. Transverse section of a stage with eight partitions ( $i n$ ut.), of which the membena propria forms the axes. ${ }_{1}^{80}$.
34. Larva with small tentacles, ta.; cct, ectoderm of the resophageal tube. $z^{\frac{1}{s}}$. (Longitudinal section.)

35, 36. Adansia diophanc. From Oscar Hertwig mod Pichard Hertwig, Die Aetinien anatomiseh und histologisch mit besonlerer Berücksichtigung des Nervennuskelsystems untersucht. Jena: Gnstav Fischer, 1879. Taf. I. figs. 3, 4.
35. Cross section of a young Adamsia in which the fifth and the sixth pairs of "septa" are still destitnte of muscle fibres.
36. Cross section of an Adamsia somewhat older than the preceding. The fifth and sixth pairs of septa, altbough exhibiting museles, have not yet joined the pharyngeal tube.
The Roman numerals indicate the ultimate gronping of the septa into pairs in the adult animal.
The Arabic numerals are nsed to indicate the supposed order of alpearance of the 6 pimary pairs of septa, the 5 th and 6 th appearing, however, at the same time.
The pairs numbered 3,3 , and 4,4 are called "direction septa" by the Hertwigs.
37. Thirteen figures illustrating the scissiparity of Aiptasio lacciatr. From A. Andres, Intorno alla scissiparita delle attinie. Mitthcilungen a. d. Zoolog. Station zu Neapel, Bd. 111., lleft 1.9 Dee. 1881. Tat. V1I.

The letters correspond to the successive epochs of observation, as follows : A. 7 Nov. 9 A. M.; D. 7 Nov. 12 m.; C. 7 Nov. $12: 20$ P. M.; D. 7 Nov. 12: 30 P. m.; E. 7 Nov. $12: 40$ p. м.; F. 7 Nov. $12: 50$ г. m.; G. 7 Nor. 1 p. M.; II. 11 Nov. 3 r. M.; I. 12 Nov. 3 1. м.; J. 19 Nov. 10 A. M.; K. 25 Nov. 3 p. м.

The maceented letters belong to figures giving the general aspect in profile. $D, D$, and $G$ are natural size ; $I$ and $K$, megnifiel two diameters, represent only the newly-formed inlividnal. The letters with a singleaceent pertain to figures exhibiting the appearance of the base, and those with a double accent to figures of radial sections. $C^{H}$, $E^{\prime}$, and $G^{\prime}$ are magnified between 2 and 3 diameters; $I^{\prime \prime} 5$ diam. ; $J^{\prime}$, and $K^{\prime \prime}, 6$ diam. ; $c^{\prime \prime \prime}$, anl $K^{\prime \prime \prime}, 15$ dian.
The parent has 96 mesenterics. Of the intermesenterial chambers the 12 primary are designated by tho odd numbers from 1 to 23 , the 12 seconlary by the even numbers from 2 to 24 , the 24 tertiary by the accented numbers $1^{\prime}, 2^{\prime}, 3^{\prime}$, etc. (not rppodneed here), and the 48 quaternary, or spurions, mesenteries are not numbered. Neither of the gonidial chambers is involved in the elhanges.
At stage $B$ the disk of the foot exhinits a gibbosity which is opaque at the margin. A radial longitudinal section shows in this stage, as also in the next (eompare $C^{\prime \prime}$ ), that it is due principally to a thickening of the entodern, which soon oceupies all the available space in the chambers. (The ectoderm in $C^{\prime \prime}$ has been drawn relatively too thick.) The region cublaced in the gibbosity is embraced betwcen the numbers 1 and 9.
In the nest stagr ( $C^{q}$ and $C^{\prime \prime \prime}$ ) the gibbosity is distinguished from the rest of the periphery by two angles, which correspond to the two chambers $1^{\prime}$ and $\delta^{\prime}$.
In stage $D$ the angles correspond to the chambers 2 and 8 . The laceration of the mesenteries embraced between 3 and 7 now hegins.
In the succeeding stage ( $E^{\prime}$ ) upon the base the laceration is completed in the median space, and is also extembel to the chambers 4 and 8 , nearly isolating the gibbosity, which now remains attached by only two delicates cords, - remmants of $3^{\prime}$ and $8^{\prime}$. The ragged edges contract toward the primeipal mass, whether of the parent or the off-shoot, gralually determining the contour.
The final separation $\left(G^{\prime}\right)$ is effected at points corresponding to $2^{\prime}$ and $8^{\prime}$. The process thns far has ocenpied only ohe hour.
Four days later ( $I^{\prime}$ ) the hasal portion of the parent shows the armangent of restored mesenteries and chanbers, and the contour shows that the scar is healed. The ofloshoot is thickenel amd romed ; the mesenteries at its extremes are fused together into a uniform ohscure mass. The chambers which persist are 3 , $3^{\prime}, 4,4^{\prime}, 5,5^{\prime}$, and 6 , together with the intervening ones. A sagittal section perpendicular to the planc of separation shows that the off-shoot has an opening where its contimuty with the parent was severel. This opening is restricted by the margins of the internal parts, which tend to curve inward at all points and,
being more pronomed below than alope, earry the aperture obliquely upward (compare $K^{-\prime \prime}$ ). Some of the mesenteries are elearly prolongel frou the curvel portion of the periphery across to the straight - or ehond - purtion corresponding to the line of sepation. The lather side subsequently assumes the appearauce of a hilus.
A view of the base cight days later ( $J^{\prime \prime}$ ) shows it almost completely roundel, and in the region of the former hilns the formation of two new chambers is confusedly indicated. It is to be sem upon sagital sections that in the region of the hilus some of the mesenteries are certainly formed by the development of the distal portion of the central mesenteries of the opposite or curved sule, others by the regular growth of the mesenteries occupying the fulded emb of the off-shot, and still others hy a new local origin ; also that the infohed portions previously mentional gradually come to form the phatrux.
At length, after six days more ( $K^{\prime}, K^{\prime \prime \prime}$ ), the ofl-shoot is developeal into a minute young actinia with nearly central mouth and twelve tentaches. Upon the base are readily recognized six primary ehambers (1-6), - of which 4 are old and 2 are new, -6 secondary, and 12 spurious chanbers. The gondial chambers correspond to 1 and 4 .
A fow days later it lase beeome quite regular, and showed traees of eraspedi (mesenterial filaments) on the gonidial mesenteries.

## PLATE XII.

Development of Zohntilaria unl Alcyonaria. Fighes from A. O. Fowalevsky, Étiente Jourdan, Whlielm Busch, Alexinder Agassiz, Edward L. Mark end Carl Claus.

| an2. po. | Anal ${ }^{\text {more }}$ |
| :---: | :---: |
| bld. | blistorlerm. |
| cam. | Artificial chamber betweener. and ch. |
| cil. | Cilia. |
| ${ }^{\text {d }}$. | Dorsum, and dorsal mesenteries. |
| d.-1. | Dorso-lateral mesenteries. |
| de. | Dextral. |
| $c$ c. | Eetoderm. |
| cil. | Eutoderin. |
| $e n^{\prime}$. | Intermesenterinal ringes of cm . |
| gtt. ol. | Oil globules. |
| lab. | Oral lips. |
| Ig. mu. | Longitudinal moscles. |


| Ty. mu'. <br> mb. pu. <br> mul. | Longitulinal museles of mesenteries Membrama propria. <br> Mesenteries. |
| :---: | :---: |
| m ut. fil. | Mescuterial filaments. |
| must. | Mesoderm. |
| or. | Moutl. |
| or. tu. | Oral tentacles. |
| phis. | l harsix. |
| s. | Sinistral. |
| sy. cav. | Segmentation carity. |
| $t \mathrm{tr}$. | Tentacle. |
| $v$. | Ventrum, and ventral mesenteries. |
| v.-l. | $V$ entro-lateral mesenteries. |

1-9. Criantlus mombranuceus. 1-fi, 8, 9, from A. O. Kowalevsky, Onservations on the revelopment of the Coelenterata. From the Puhlications of the lmarial Society of Fricnds of Natural Sciences, Anthropology, and Ethoography. Moscow: Katkov. 1873. (hiussian.) I'l. VI.

1. ligg after the sermentation is completed. $3^{3 n}$. The llastoderm, of a single layer of uniform colnmar cells, cmbraces a comparatiely large segmentation carity.
2. Stage showing the invagination of one half of the blastolerm into the other half. At the botom of the eavity are seen fat glohmes (ytt. ol.) which came ont throngl the invaginated eells, con.
3. A farther developerd stage, alreuly slightly elongated.
4. The edges smronmling the month-opening have been infolded to form the begiming of the stomach, pher. Note. - This infolding aflects prineipally only two opmoing sides, wherely the eavity thas formed is bommed on two siles, as shown in this figure, ly looth layers (re ant en.) of the infolled wall, whereas at the two remaining sides the infolled protion of the ectonlem is in immethate contart with the superficial layer, the rutolem not heing involvel in the folding. The upper part of the contodermic eavity is thus divided into two lateral pockets. Compare fige 9.
5. A still more developel stage, in which four tentarles (he.) have appeared. The rim or lip which surrounds the month-opening is seem throngh the substance of a tentacle at $l$ lub .
6. A swimming larva of Certunthus, whith shows, thesile the four tentucles, a pair of oral tentacles (or. tur.), a pair of mesenterial filments, and an indication of the so-called anal fore at the aloral end.
7. Longitulinal section of a larva of Cirinuthus m.mbranaceus. $1_{10}^{n}$. From Etienme Jonrlan, Hechereles zoologiqnes et histologipnes sur les Zoanthaires in Golfe ile Marseille. Amn. sci. nat., sér. G, zool., Tom. X., Art. no. 1. Pl. XVI. lig. 121.
S. Transerse section through the posterior end of the larva represented in fig. 5. The longitnemal musples of the wall, lying on the onter margin of the membana propia, are shown eut across at ly. mu. These are believel to have origimated from the ectolem. The cut ends of the longitudinal museles on both sites the mesenteries are seen at 7 g , mut.
8. Transverse section throngh the upper end of the same larva.

10-15. Crithuthus? (Dienthan nobilis Busch). From Wilhem Busch, Beohachtongen iiber Anatomie und Entwickelung einiger wirbellosen Seethiere. Berlin: A. llirschwald, 1851. Tat. XV1I. figs, 1, 2, 4, 5, 7, 8.
10. Yomg lara, iniformly ciliate ; tow opaque to show internal strnetne.
11. More adsancel stage of the sume imblividual. To the two maments of tentaldes which made their appearance 24 lours carlicr, is now addel a thind, which is soon to be followed by a fourth. In swimming, the end opposite the tentaches is in :mance.
12. Beside the four tentales there is a pair of oral elpations. Comprar or. ta, fig. 13.
13. Otal aspert of a six-tentacle stage. 'The 1 wo mw tenticles are $t h^{\prime}$., $t t^{\prime \prime}$.
14. A seven-tentacle stage, much contracted. The fith tentacle (5) has reached tho length of the fome olfer ones. The sixth and serenth hawe hoth apreared in the same intertentarular spoce, mandy, the ome andjaecnt to the space occuped by the liftly. The oral lips show a maximun protrusion. Two of the clavate organs ane pedumbate; two, attached hoir the bases of the sixth ant seventh tentacles, ate still sessile.

Nores.-The tentacle markel "a" is stated liy the anthor to be the fith, which at this stage reaches the siz: of the lirst four. One wouk matumly infor that fe', of fig. 13 , being the larger, would he the new tentacle first to attain the size of the other four ; surch howere camot be the cense, since in lig. 14 the relutire position of the tifth as comparel with the sixth and serenth does not admit this conclusion.
15. Stage-about 30 days ofder tham that of fig. 10 - with seven tentacles of equal lenorth and four pedmenlited club-shaperel organs, $m n t$. fil.
16-23. Ehrordsia (sp.?). 16-22. From Alexander Agassiz, On Arachnactis brachiolata, a species of floating Actimia fomul at Nahant, Mlassadusetts. Beston Jour. Nat. Hist., Vol. V11., pr. $525-531$ and 5 wooleuts; and from drawings by Alexamter Agassiz at Nahant, sept., 1862.

Note. - The matural attitule of the amimal white swimming is with the tentacles down, the jomger tentacles, howerer, being on the side nearest the surfact.
16. The young larva with only four marginal tentacles, seen from the side (ilursal?) hearing the yonurest pair. The two in the distance are the large pair of tentacles at the opmosite extremity of the month-slit. Thes slit and the folds from which are formed the hanal tentacles are sect edgewise, and there are already indications of the existence of mesenterial fitaments. The large polygonal "yolk-cells" form a central mass, which slowly revolves, and is reduced in size as the lama inemses in age.
17. Oral view of a larva with three pairs of tentaches, beside the obl tentache which lies in the axis of the oral clongation and in this figure is phapell hlow. The disk should have hen represented more strongly comperseel latemally. d? (lursm? ? The region of the fomation of new tentates. The oral tentacles are as yet sim$\mathrm{g}^{\text {le }}$ thickenings of the walls armul the mouth, and project straight mpas seen in fig. 16.
18. A later stage, seen from the elge (vental!) which bears the obl tentacle, and showing the labial teatacles directly above the latter. A pair of mesenterial filaments and the sphere of yolk-cells are seen through the wall of the boily.
19. Oral aspect of the same stage as that of fig. 18. The odil tentacle (ventral edge ?) down. The paired tentacles decrease in size towat the dorsu:n (d?).
20. Much later stage with 18 teutacles, seen from th" (dorsal?) celge which hears the yonngest tentacles. The ontline of the oral hips sech throngh the tentacles; the odd tentacle in the distance. The mesenteries are symmetrically arranged and propertional in size to the corresponding tentacless and the sphere of yolkcells is much selneed in fromortion to the size of the pavity.
21. View of the same from the rental (!t edge, only one half of the oalal end being shown; the large pair of oral tentaches quite prominent.
22. A stage less adwaneed than the last, seen from the left (?) side, the labint tentucles seen through the marginal ones. The "digitate appendares" (mesenterial filaments) have their convexnties turned away from the odd tentacle of the rentral (') nargin.
23. From a drawing of an Elwardsit with 16 tentugles which was mised from "Arachnactis" and "hawn by Alexander Agassiz at Newport, li. l., Sept. 18 ie. One pair of the mesenterial lilaments is muth more duvelopelthan the remaining pairs. Sten from the ventral (') sited.
 parasitic in its carlier stages in Anemiopsis Leidyi, perhaps Ehtermaia limelu Verrill. Figures eband 33 were drawn from living specimens toward the end of October 1882, the others, "ither at Newport, li. l., in Angust 1882, or from material collected at that time.
24. Ontline of Mnemiops showing numbers of the parasites of varous sizes groupet ahout the infumbinntum and the begimings of the radial panals. Mimy stages, and often' in greater numbers, are usually to be found in a single jully-fish. They are more or bess trameluent and of a delicate pinkish color.
25. One of the lager parasitie indiviluals, removed from the jolly-fish. if. The pharyageal sate is very short
 which are alrendy fomed, are not shown in the hawing. On separating frow its host, the parasite centracts, though slowly, tu such an extent that its propronions are almot the same iss those of the (crianthas larsa sham in tis. in. In this combtion it leals a free life. It swims like actinia larve with the aboma end furchost.
26. A later, balloon-shaped, free stage as seen swimming. The positions of the mesenteries are marked hy superficial longitudinal depressions. Eight tentacles have already appeared. The cilia which cover the whole body are relatively too short to be reprohuced. $\frac{15}{1}$.
27 Ventral aspect of a young parasitic stage, showing the latero-ventral mesenterial folds, which are the first to be developed. $1_{1} \frac{3}{2}$. The right lateroventral mesentery ends somerhat abruptly before reaching the aboril pole. The other mesenteries are only feebly indicatel in
25. Posterior face of a cross section of the same larva near the iniddle of the anterior half ( $a$, fig. 27). Depressions in the surface of the entolerm show the places wher the mesenteries will appear. In this section the depressions corresponding to the dorso-lateral mesenterics ( $l_{0}-7$. ) are most evident, those of the ventral pair ( $($ r.) less distinct, and those of the dorsal pair (d.) not indicated. The ventro-lateral mesenterial folds are strongly ciliate, but cilia eannot, in the scetions, be seen on other parts of the internal wall. The cells of these folds are welge-shaped-columnar in form, whereas all the rest of the inner cell-layer is of a spongy or reticulated alpearance and the cell boundaries are not distingnishable. $\mathcal{L}_{1}{ }^{6}$.
29. A parasitic stage somewhat older than the preceding, stamel, mate transprent moveoil, and seen from the dorsal side; magnified abont 20 diameters. The edges of the ventro-lateral mescinteries are seen to be contimons with the ectodernie lining of the pharyngeal sac, and may be traced to the middle of the posterior half of the body, where they "ppear in the drawing to meet by convergence. The ectoderm is thick at both ends, but much thimer along the sides of the larva. An artificial (?) separation between cetolerm and entoderm at the oral end leaves a scries of arehed spaces (com.) around the front eud of the pharyngreal sac.
30. Cross section throngh the pharyngeal sae of a stage near the preceling. $7_{1}^{2}$. Although drawn from the anteriov face of the section, the lithographer has reversed it, so that the effect is as thongh it were a view of the posterion tace. The cetoderm is rather diagrmmatic, the unshaded portions heing intended to represent the gland-eells. The row of dots at the deep surface of the ectoderm indicates diagrammatically the enlargement of the basal ends of ectolermic cells. Similar rows of dots on oue side of each of the mesenteries represent the cut ends of the longitndinal miscles of the mescnteries and are somewhat too strongly markerl. The muscles are only feebly developel at this stage. Spindle-shaped nucleated cellular elements are scintily present in the homogeneous sub-ectodermal layer, as at $c /$.
31. Anterior face of the fourth section below the free end of the pharyngeal sac, from the same individual as the preceding figure. $7_{1}^{2}$. The ventro-lateral mesenterial filaments are cut obliquely, esprecially the one of the left side. The vacmolated nature of the entodern is partienlarly noticeable when it projects, as is often the case, in thick longitudinal rilges into the common cavity of the boly. These thickenings ( m !.) , although constantly occmring in all the interspaces hetween mesenteries, are very irregular in their dimensions. Compare figure 33 , where, as is always the case with later stages, they are more conspichons than the mesenteries themselves.
32. Anterior face of a cross sention near the aboral end, from another specimen of about the same age as the freceling. 32. The cutolermic ingrowths nearly fill the digestive space, and have a peroliar zis-zag course, not well reproduced by the lithographer. This peculiar appearanee results from the fact that the section is so near the ahoma cond as to approwel the condition of a tangrutial scetion. The midule half of the rentrolateral mesenteries, as well as the inter-mesenterial protrusions (on'.), are so thoronghly vacmolaten as to present a very porous and spongy appearance which makes the histological distinetion between the thickened free margins of these mesciteries (the mescnterial filaments) and the more peripheral parts of the mesenteric folds very conspionous. This difference is intensified by the deepstain which the marginal band takes.

Nute.- On accome of the small size of the drawing neither the vacuolation nor the structure of the mesenterial bants have been well reprodnced by the lithographer.
33. Ventral aspect of a living specimen possessing sixteen tentacles arranged in two cyeles of cight each, the smalier alternating regularly with the lurger; magnified abont 7 diameters. The transparency of the animal allows one to see the short pharyugeal sae and the mesenteries of the opposite wall, althongh, to aroid confusion, the latter have not been drawn. The animal is very changeable in form, the aboral end being often much more dilated than in this fignre. The matle of amorphous matter ( $\beta$ ) surombling the column is the product of ectodemie secretions, and forms a loose tube within which the animal may retire.
34. Etherredsin? From C. Claus, Bemerkungen ïher Ctenophoren und Medusen. Zuitsehr. f, wiss. Zool., Bul, XIV. Taf. XXXV11, fig. 7. A spheroidal larra from Messina magnified about 25 diameters. Tlre walls consist of a suall-celled ciliated entoderm and an retoderm of large cells, the two cell-layers being separated by an intervening layer of clear homogencous subatance. Two of the toplve ( $\delta$ ? meridional rows of large orange-yellow fat-glohnles are inlicated by gtt. of. There are four coiled tentacle-like arms (mescuterial filanents? which may le protruled through the month opening.

Note. - It is probable from the statements of the brothers Hertwig (op, eit. pll, 126, 127) that this is the goung eithor of an Edurnorlsio or a nearly related monnown form, since it has fome paiss of mesenteries with well developed museular bands, which have exactly the same arraugenent around the pharvngeal sac as in Elducerdsia.

35, 30. Etheardsia? (Kithiphobe appendiculuta Buseh.) From Wilhehm Buselt, Beobnchtungen iiber Anatomie, ete. (citul above), l'l. 130-132, Taf. IIV. figs. 8, 10. Mamified about 100 diam.
35. Larva with oral end down. Into the genema cavity two eluh-shaped organs (mut, fil. ?) projeet. At the aboral pole there is a tult of cilia, half as long as the boly, which is ouly partially represented in this figure.
30. The sime larmas that last ligured with the elub-shaped organs protruded through the mouth. The latter are ciliate, and armed with nettle-cells like the eetoderm.

3i-43. Alcyonium digitutum Lam. From A. O. Kowalevsky, Observations on the Development of Coelenterata (-ited above). Ill. 16-23. Taf. If li, and V.

37. The central, as well as the outer, layer has broken up into uncleated cells.
35. The lama is alvenly fomed. The limits of the imer cells and their melei are only rery indistinctly risible.
39. (Ertoneonsly momberd 30.) An alvaned stage of a fre swimming larva. The entodemic cavity is nemly filled with yolk substane ( $\%$ ) , containing at one pole traspurent vanoles.
40. A larva which has become attached.
41. Aromul the infolding which was formed at the upper end there have grown out eight rounded protulece ances.
42. A ernss section of the preceling stage, showing the pharyngeal sac ( $\mathrm{m} h \mathrm{r}$.), the continuons layer of sub-ectodermic cells, - the middle layer (msel.), -and the walls of the mesenteries suromudiur still persistent masses of yolk.
43. Cross section of a more adraneal stage than the preceling. The remmant of the yolk ( $2 t$.) lines the inmer surfece of the entoderm, and the mesoderm (mst.) is composed of a double layer of spinde-blithed cells. The membrana propria is seen between the entodernic walls of the mesenteries.

## PLATE XIII.

Development of Zoantiaria and Alcyonaris rontinad. Figures from Hexhi de LacazeDuthers, Étienne Jourban, A. O. Kowhersix, G. yos Kocif, Edmund B. Wilson, amd R. v. Willemoes-suing.

| cal | C'apsule. |
| :---: | :---: |
| cil. | Cilia. |
| coll. | Columella. |
| c. ${ }^{\text {c }}$ | Calearems concretions. |
| $d$. | Dorsum ; lorsal mesenteries. |
| d.-1. | Dorso-lateral mescnteries. |
| c. | Ectorlerm. |
| cn. | Eutorlerm. |
| $e n^{\prime}$. | Thickening of en corresponding to the caleareous sepita. |
| $\mathrm{cn}^{\prime \prime}$. | Inner layer of cra . |
| cthe. | Epithera. |
| git. of. | Oil glabules. |
| mb. pu. | Membrana propria. |
| $m u t$. | Mesentery. |
| ur. | "Wall" of the calcareous cmp. |
| mis d. | Mesoderm. |
| ut. | Nucleus. |

$n t^{\prime}$. Clear space in the region of the germinative resicle.
nll. Geminative spot.
or. Mouth.
pes. Foot.
pher. I'hargnx.
ppl. protoplism.
m. Primary polypite.
reh. Rachis.
rud. Pulimentary zomils.
scp. Calearous septa.
sper. Spiculum.
tir. Tentacle.
tet. Short tor ; beginning of to.
tc. Testis.
v. Ventral.
vit. Vitellus.
z d. Zoüicl.
$z d l$. Median (or "Haupt") zoöid.

1-11. Astroides calycutaris. From Lacaze-Duthiers, bévelopmement des Comalliairs. Deuxiome mémoire. Actimiaires à polypirs. Ach. de Zool. exp. et genl., Tom. 11. 1873. l'ls. Xll-XV.

Note. - The sequence of the stages is indicated by the following onder of the figurs: $: 1,6,9,5,7$, $2,3,4,10,11,3$.

1. A fre-swimming larva with strongly expressed spiral form, which it assumes when in motion. The arrow indicates the direction of the motion, the alomat end being in alvance.
2. Oral aspect of a larva with 12 mesoluteries. The twelve lobes thus fomed are divided by the first pair of mesenteries, as in A.tinia (sce Plate XI. figs. 12-16), into two groups of 7 and 5 respectively. The orter of succession of the mesenteries is the same as for $A \cdot t$ inia.

Nute. - It will be seen by compurison that the eth and Cth are transposel, as enmparel with Actinia !
3. Ohligne view of the ahoral end of the same larva.
4. A some advanced lava than the pereding. After having logen, while in the frep state, the formation of calcareous nolules in its tissurs, it is now attached, anl tentacles have made thoir aprearance.
5. The embryo begins to undergo a monifieation of fom. The mouth (or.) is seen at the summit of an elevation sumbund by the peristome; the font is relatively reeluced in size.
6. The same larra as seen in ligare 1. Granules are sten escaping from the mouth, whieh is placed above.
7. Side view of an embryo whith hats attached itself to the microsenpie slide.
8. Tiew of the hase of a specimen in which the calcareous septa are forked at their peripheral ends, the tines of the forks being alourt. The mural (יpithecal?) layer (cthe.) is alrealy formeel, but the septa are not yet juined to it.
9. An embyos slightly compressed; hefore compression the suffare shomed no trace of a striation, althomgh the walls of the boly had advamed into the cavity and reey young mescoteries were alrealy developal. The distinction hetucen the inner and mater layers is evident.
10. A yoms polyp perfertly invelopel, having two eyches of tentacles. At the base the wall (e hac.) limiting the enp of the young phly has alrealy lecome wery evitent.
11. The intermal ("ntoderm) and external (wetomem) layers are sharply marhed. The elongated ealeareons notules indicate the peonts of origin of the septas. The thre erntres of deponit for cach septmm are locatel not in the external but in the intemal (entoderme) layer. (Compare koch's results, below, figs. $18-28$.

12-15. Betanophyllite regiu. From É. Tonrlam, heederelacs zoologiques et histologiqnes smi les Zoanthaires du

12. Vermiform larva. i.
13. A more alvanced laraa i.
14. Lomgitudinal section of a larva of the same stage as the preceling.
15. Tramserse section of a larva having six menenterial plates. Mis. $\%$. The mesodem in process of fommation. ${ }_{1}^{3 n}$.
16. Norns. - Figmes 16 and 45 have been transposed by the lithographer. For the explamation of figure 10 see below.
45, 17. Astrica (sp ?). From A. O. Fowalevsley, Onservations on the development of the Culenterata. From the Publications of the lmperial society of Friems of Natural Sciences, Anthropoogy, and Ethography. Moseow: 1873. (Russith.) l'late V. figs. 15, 17.
45. Longitudinal section of the large, ciliated, luick-red larra. The eentral mass ( $v t$.), evilently derived from erfls, is now eomposed only of muclei ( $u l$.) and oil globules (yft. ol.). The cutomem (me) of the present stage forms only a part of the many layered entoderm of the fully developed proly p, the lakimee being derived from this central mass.

Note. - The dotted line from en should not have been carried as fir as the ential mass, hut shonld have ended in the layer of columnar cells separating the ectoterm from the central mass.
17. View of the larra from the oral end after it las hecome attached and flattemed. tut The mbliment of a tentacle. The radial or intemesenterial chambers ( $r$ cem.) aprear as tran parent cavities.

Note. - The central ands of the mesenteries honnting all the chambers exetpt two are gromped in 1 arrs, and in such a way as to make the whole appear symmetrieally divided hy the line $\eta$. That this lime eamot, howerer, represent the projection of the plame of biateral symmetry, is very evilent from the stndies of other obsewers.

18-28. Asteroides calycularis. From G, von Foph, Teher die Entwicklung des Kalkskeletes von Asteroides caly. cularis und dessen monphologiseher Bedeutung. Mittheilmagen aus der Zoologischen Station zu Neapel, Bl. Ill. 1882. Taf. XX., XXI.
18. Somewhat more than one-half of a radial scetion of a young larva, killed the last of Jume, which had attached itself to cork ( $\theta$ ). 'llow first trace of the skeleton lies between ectolerm and cork in the form of small, more or less fusen, calcareons concrements, $c x$. The section along the flow passes loncritulinally through the entodemic thickening ( $\mathrm{ci}^{\prime}$. ) comerponding to the phace sulsequently occupied by the callea-

19. Portion of a section from the same indivilual, parallel to the preceding section, lut distant from the centre. Three mesenteries ( $m$ ne.) and two of the entolermic thickenings ( $\mathrm{cn}^{\prime}$.) are ent transversely. The beginning of the skeleton ( $x$. ) is also to be sem below the ectolerm. $\frac{40}{2}$.
20. Purtion of a seetion similar to the preealing, through an older individnal. One mesentery with a median layer of connective substance (mosoderm, $m$ st .), hanked on either side ly entoderm, is cut across, as are also two calcareous septa (ecp), continuons with the floor-skeleton. $\frac{7_{1}}{1}$.
21. Marginal portion of a seetion from an individual killed in the middle of July. To show the formation of

22. A small portion of the base from the section shown in fig. 18 , more highly maguified. The entolerm is raenolated and contains molei. 'The mesodemic comective tissue is searely disecmild" (not well seproducel in the lithograph). The ectodermic cells are nueleated and havestarp eontours, esperially at their free: ends. The calcareons concretions (ce.) are very small spheroids and donble spheroids which lie between the free ends of the ectodermic eells and the cork.
23. A portion of the preeding still more magnified, and giving a better iden of the form of the coneretions and their relations to individnal cells.
24. The cells of the ectorlerm from another part of the same section, together with a ealeareons concretion.
25. A stage somewhat older than that (compare figure 8 ) in which the septa remain sepmate. The latter have aequired by their lateral ontgrowths a complicated form. A portion of them have fused with carh other at the periphery to form the first thace of the manal layer (mor.) ; in the centre also several have joined their fellows. A narrow rim of epitheca (e (fice.) is alreaty formed, but remains distinct firm the maral layer.
26. The oldest stage raised antificially; near the end of Octoher. Six of the calcareous septa overtop the other six, aml a new series of 12 additional septa is faintly indicated; the columella (coll.) is already formed. This individual is distinguished by a very considerahle development of the epitheea. i.
27. A muth further developed stage, hearly 2 mm . high. There are $2 t$ septa which fall into three orders accordiug to their relative sizes. The epitheca is not risihle, as it does not reach to the margin of the еир. ?.
28. Almost fully developed single individual with 48 septa, 12 of which overtop the others.

Subsepuently 48 new septa, alteruating with those already formed, make their appearauce, and the main septa are at the same time increased in number fiom 12 to 24.

29-12. Corellium rubrum. Frous Laeaze-Duthiers, Histoire naturelle du Corail, ete. Paris: 186t. l'ls. I., 11., X1., XIV., XV., SVII-XLX.
29. One of the many forms assumed by the ciliate larva in its matural position, with the mouth-end downards.
30. Another, more worm-like fom of the ciliated larva (compare comespoming stage of Astroides, fig. I).
31. One of the stages of transfonnation from the wom-like to the disk-like form. The aboral region becomes enlarged, and the oral end sinks in.
32. An expanded "oüzoite" (aninal developed from an egg) attached to a rock; the latter not reproduced here.
33. An oozoite still older than the preceling, though still sinple. Expanded and seen from the oral side.
34. The same oüzoite seen in fig. 32 , but in a contracted condition.
35. One of the tentacular arms of the adult, seen in profile. In this position the barbules are seen to be directed oblipuely from above downward, and from within outward.
36. Oral view of a larva several days after its metamorphosis. The central part around the mouth (6) is already clevated and forms a bourvelet; the lase is not so regularly circular as it was at first, since it commences to spreal itself over the bolly to which it is attached.
37. Extremity of a bathle from a tentacle of an adult, magnificd 250 dian. ec. External cell-layer. cu. Large cells forming a uetwork and bearing vibratile eilia.
3S. Spicules whith are exposed on tering away the epitemis from the adult.
39. Nematocysts from the adult; one with the mother-cell still surrounding the nematocyst - or internal eapsule - with its spiral filament.
40. Portion of a catial fold (mesentery, $m a t$ ) hearing ( 1 ) at $o v$. an egg, the capsule (cap.) of which las in part fallen away, and the vitellus ( (it.) of which [resents a rery distinct clear sjot ( $n$ l ), comesponding to the transparent (geminative) vesicle, in the middle of which are to be sen the germinative spots (nll.) ; (2) at $t c$. a capsule in process of development, remarkable on account of an apparently empty space ( $\lambda$ ) sumounded by a cellular band ( $\kappa$ ) which lines the capsule; this is a testicle.
41. A small rock to which are attached three zoanthodemes, the polyps of 2 and 3 having been destroyed. 3. The begiming of the corallum ; a plate with irregular sides covered here aud there with small projecting corpuscles bristling with points. 2. Exhibits an early form of the comallum. It consists of an irregular piate, curved into the shape of a horse-sloe, fomed of masses of agylomerated spicules. The gemeral earity of the body of the polyp ocerpies the interior of this curve, and consequently the solid plate is formed, as may be seen at 1 , in the milst of the sarcosoma between the external and the internal surfaces.
42. Zoanthodeme composed of oue oözoite (1), and three "blastozoites" (budded individuals), 2, 3, 4.

43, 44, 46. Gorgoniu verrucost. From G. von Koch, Vorläufige Mittheilungen über die Gorgonien (Aleyonaria axifera) von Neapel unt iber die Entwicklung ron Gorgonia rerrucosa. Mittheilungen aus der Zoologischen Statiou zu Neapel, Bd. IIt. 1S82. Figs. 10. 13, 15.
43. Section througb an egg befure the segmentation spheres have been diffirentiated into distinct layers. The outer cells are somewhat smaller than the inner, and all possess distinct nuclei. The latter appear to be wanting in some of the cells simply because lying outside the plane of section.
44. Longitulinal section of an attachel individnal, showing the thin layer of ectoderm infolded to form the pharyngeal sac which opens into the entodermic eavity helow.
45. Nore. - Figures 45 and 16 have been accidentally transposed by the lithographer. For explauation of 45 see above.
16. Gorgonie verrucossf. From A. O. Kowalevsky, Observations on the development of the Ceelentrata (eitem ahove). Taf. V. fig. 19. Ciliatel lara. There are to be distinguished two layers in the entoderm. The peripheral layer (on.) is striate, indicating its composition ont of cylindrical cells, with irregularly arranged nuclei ; this merges into the inner layer ( $\left(n^{\prime}\right.$.) which is granular, filled with highly refractive spherules, and is ciliate. (The cilia are not figured by the author.) The latter is considered equivaleut to the yolk-mass of Aleyonium and of Astrea.
46. Four cells of the ectoderm, one of which has migrated into the underlying mesolermic layer (Zwischensubstmen) and shows at one side of its nucleus the cross section of a spieulur which is being formed within it. The same efll somewhat more eularged is figured near by.

47-52. Renilla reniformis Cuv. From E. B. Wilson, The Early Stages of Renilla. American Jonmal of Science, ser. 3, Vol. XX. 18s0. I'l. V11.
47. Young, bilaterally symmetrical, ciliated, free-swimming pulyp with the first $1^{\text {nin }}$ of zoöids ( $z d_{\mathrm{c}}$ ). Of tho septa (mesenterics), the dorsal mair ( (d.) extends back as fiar as the zonids, the dorso-lateral (d.-l.) pair reaeles the posterion enul of the body, tho ventro-latenal is somewhat longer than the dorsal, and the ventral pair is the shortest of all.
48. Later stage with 8 pimate tentacles, probahly ahout 2 wecks after the abandomment of the free mode of life. A third zouid (z dl.) las appeared in the medim line on the dorsm, in front of the two first zooids. It is the "Irauptzooil" of the German writers.
49. A much later stage. The first pair of lateral zoöids (1.) now have well-developed tentacles. The order of appearance of the paired zooids, which develop into sexual zoöds, is indieated by drabie numerals. There are, in aldition, three (usually there are 2 pairs) mdimentary zonids opposite the hases of the tirst pair.
50. A much later stage than the preeding, in a state of contration. The primary polypite ( $p y$.) has its oral extremity at the edge of the disk, and not yet turned upward. Sulsequently this and all the marginal zooils are fored upward and made to ocelly the upper surface of the disk ly the mion, belind (below) them, of the yomger zoöds whieh had ont from the angles between them and increase in size. The mdimentary zouids bud in a similar mamer, each group becoming a kind of minature of the whole colony.
51. An enlarged view of one of the simple zoiids of hig. 50 . The shall ventral chanher is always tumed toward the enntre of the disk, that is, aucay from the oral extremity of the sexual zoöid on which it is situated.
51*. A more advancel condition thim that of the previonsly figured zoöd. The rudiment of a new zoöd ( $\approx d^{\prime}$.) has appeared on the nper side.
52. This new zooid is fully developed, and two lateral zooids $(1,1)$ have appeared.

53-j6. Umbellularia (sp.?). Fron I. v. Willemocs-Sulm, Notes on some Young Stages of Umbellularia, and on its Gcographical Distribution. Ammals and Magazine of Natural Ilistory, ser. 4, Vol. XV. 18.5. 1l. SVlIIA.
53. Yomg stage seen from the ventral side. The terminal polypite ( my .) probably comes out first, as it exceels the others in length. In this and succeeding figures the order of the aprarance of the polypites is indieated by Arabic numerals. The rachis is shown as seen in a specimen rendered transprent. lieduced to one half natural size.
54. Another and older specimen seen from the dorsal side. A fourth polypite has appeared by the side of the original temminal polypite aml has overtaken it in size, so that there are now two terminal pulypites of equal size but different age, and two lateral polypites $(1,1)$ behind them. In addition, a fitth (3) has nade its appearance in the middle of the dorsum. 'The zoideds appear first on the ventral side as secn in
55. A ventral view of the same specimen as the preesding, the zoids being indieated by clots.
56. Dorsal aspect of a larger specimen in which the primary polypite (py.) is supplemented by another terminal one. The author doos not distinguish between then, but the figures seem to warrant the intergretation given by the lettering here adopted. There is a median line along the dorsmm which is destitute of zooitls.

57-59. Alcyonium digitatum Lam. From A. O. Kowalevsky, Observations on the development of Culenterata (cited above). Taf. IV B. Figs. 1, 3, 4.
57. Seetion of the egg, in which may be distinguished a peripheral layer of finely granular protoplasin ( $p$ pl.) and a central mass containing yolk spherules (ot.).
58. Protnberances of the finely gramlar protoplasm of variable size appear as the first indication of segmentation. These are gradually constricterl ofl from the eentrul mass which they then envelop as an irregular layer.
59. This peripheral laycr of cells mudergoes further division. Some of the eells contain two melei (al.), and a deep layer (en.) begins to be fomed. Gradually there is fomed from the onter layer a contimous envelope of ectodermie cells, and the whole central mass breaks $n$ p into larger nucleated eells, as sem in fig. $37, \mathrm{I}^{\prime}$. SH., which, with succeeding figures, continues the illustration of the development of Alejonimu.

## INDEX.

| GE | C: |
| :---: | :---: |
| Acraspedr, Development of, Pls. V., 26 ; VIII. 19, 20-31 | Diphyes Sirboldii, Pl. VI., 26-23 |
| Actirio equina, Pl. XI., 32-34 . . . . 40 | Iiplophyse incrmis, 11. VI., 25 |
| Actiaia mesembrantlemum, P1. XI., 1-25 . 38, 39 | Discoidca, Development of, I'l. VI., 2-9 . 20,21 |
| Actinia sp,? Pl. XI., 26-31 . . . . 39,40 |  |
| Actimiace, Development of, Il. XI. . . 38-41 | Elucardsia lineata ? P1. XII., 24-33 . . . 43, 44 |
| Actinulu, I'l. V., 11 . . . . . . 18 | Eilutardsin sp.? P1. XI1., 16-23 . . . . 43 |
| Ademsia diuphana, II. XI., 35, 36 | Etutardsite? Pl. XII., 34-36 . . . . 44, 45 |
| Agirlma elcgrns, Pl. VII., passink . . . 25,26 | Ephyra, I'l. VIlI., 40-49 . . . . 30, 31 |
| Agatma Sarsii, PI. VII., passim . . . $24-20$ | Epibutio antentince, PI. VI., 10-15 . . . 21 |
| Agalnopsis pictum, PI. VI., 19 . . . . 22 | Eucope polystylu, II. III., 19, 20 |
| Agtaplicuia pluma, Pl. V., $25^{\text {a }}, 25^{\text {d }}$. . . 19 | Eudoxiu Lessonii, Pl. YI., 28 |
| Aiptasia lacerata, Scissiparity of, Pl. XI., 37 . 40, 41 |  |
| Aleyoraria, Development of, Pls. X1I., 37-43; | Gcryonia curybia, Pl. IV., 21-36 . . 15, 16, 17 |
| X11I., 29-59 . . . . . 45, 4S, 49 | Gleba hippepus, Pl. YI., 16, 17 |
| Alcyonium digitatrem, Tls. XII., 37-43; V1I1, 57-59 | Glossoculon curybia, Pl. V., 1-3 . . . . 19 |
| Authozor, Development of, Pls. X1.-XIII. . 38-49 | Goryonia verrucosa, Pl. XIII., 16, 43, 44, 46 . . 48 |
| Asteroides calyeutmris, P1. XIII., 1-11, 18-28 . 46-48 |  |
| Astireet sp, ? Pl. XIII., 17, 45 . . . . 47 | Ifalistomma rubrum, PI. V1., 18 |
| Astroides sp.? (See Asteroides.) | Hormiphomplumosa, PI. IX., 43 . . . . 34 |
| Aurclia fluvidulu, P1. VIII., 1-9, 20-49 . . 20-31 | $\begin{aligned} & \text { II yhocodon prolifer, 1'l. II., 17-23 . . . } 10,11 \\ & \text { I!yitra aurenticca, Pl. I., 1-6, 8-11 . . . . } \end{aligned}$ |
| Balanophyllia regia, Pl. XIII., 12-15 . . . 47 | IIytroide, Development of, Pls. I., II., III. . i-13 |
| Beroë Forskalii, Pl. IX., 42, 44, 47 . . . 33, 34 |  |
| Beroê roseole, Pl. IX., 1-9, 10-13 . . . 32, 34 | Kalliphobe appendicetutu, Pl. XII., 35, 36 . . 45 |
| Bougatinvillu fruticosu, Pl. V., 13-15 . . 18 |  |
|  | Lampetia paucerina, Il. X., 18, 19 . . . 36, 37 <br> Laomedect amphora, PI. III. 17, 18 . . . 13 |
|  | Laomedea flexuosa, PI. II1., 12-15 . . . 12, 13 |
| Cerionthus membranacers, Pl. XII., 1-9 . . 42 | Liごut octrpunctuta, II. V. 20 . . . . . 18 |
| Ccrianthus? Pl. X11., 10-15 . . . . 42, 43 | Luccmaria? Pl. V., 23, 283 . . . . 18 |
| Cestus I'eneris, P1. X., 11-17 . . . . . 36 |  |
| Chüja mutticornis, Pls. IX., 41; X., 1-10 . 33-36 | Monophyes minoidialis, Г1. V1., 20, 30 . 22, 23 |
| Clawatella prolifera, I'l. Y., 11 . . . . 18 | 1ruggicet, PI. V I., 31. . . . . . 23 |
| Clytiot potcrium, II. IlI., 6-11 . . . . 12 | (1fyriothcle) phrygia, Pl. I., 12-22 . |
| Corallium rubrem, 11. XilI., 29-42 . . . 48 |  |
| Coryne mirabilis, Pl. II., 1-16 . . . . 9, 10 | Ohelict commisumais, Pl. 111., 1-5 . . . 12 |
| Cteaoplioru, Development of, Pls. IX., X. . 32-37 | Obelia geniculatu, P1. 1II., 16 . . . 12, 13 |
| Cunina octoneria, Pl. IV., 14-17 . . . 15 | Decenizar lemguidu, P1. V., 16 . . . . 18 |
| Cuninu rhadodactyla, P1. IV., 11-13, 18-20 . . 15 | Deyroë crystallina, 11. X., 20 . . . . . 37 |
| Cyfunce Arctica, Pls. V., 26; VIII. . . 19, 29-31 |  |
|  | Perigoncmus restitus, Pl. V., 12. . . . 18 |
| Dientlira nobilis, Pl. X1I., 10-15 . . . 42, 43 | Phelsctia Arethusa, P1. VI., 1 . . . . 20 |
| Dicoryne conferta, 1'l. V., 8, 9 . . . . Is | Physophura lyylrostatiar, Pl. Y'II., 26-29 |


| Physophora magnifica, Pl. YI., 20-23 - .Page <br> 0 | Thoe puradoxa, Pl. X., 18, 19 | $\begin{array}{r} \text { Page } \\ 36,37 \end{array}$ |
| :---: | :---: | :---: |
| Pleurobruchiu rhatodnctylu, Pl, 1.., 8, 0, 14-37 32, 33 | Tubuheria indivisa, P1. V., 10 |  |
| Potyremia lercostylu, Pl. 1V., 1-10 . . . 14 | Tubutaria lerynx, P1. 111., 26-30 |  |
| Porpitu, Pl. VI., 8 . . . . . . 21 |  |  |
| Praya, 11. V1., 24 . . . . . . 21 | Unbellutaria sp. ? P1. XIII., 53-56 |  |
| Rataria, Pl. V1., $5-7$. ${ }^{\text {- }}$. . . . 20, 21 | Velella mutica, Pl. VI., 2-4, 9 | 20, 21 |
| Renilla reniformis, Pl. XIll., 47-52 . . . 49 | I'illia omuta, Pl. V., 19 |  |
| Schizocludium remosum, Pl. V., 24 . . . 18, 19 |  |  |
| Seyphostoma, Pl. V1II., 27-33 . . . . 30 | Zoanthariu, Development of, Pls. X1., 1-37; |  |
| Siphonophora, Development of, Pls. VI., VII. . 20-26 | X1I., 1-36; XIll., 1-28 | 38-48 |
| Strobila, Pl. V1LI., 3t-39 . . . . . 30 | Zygodactyla Giocnlandica, Pl. V., 17, 18 |  |




MEM MC.Z 1 ANo. 3.


1
08
 - N



## Embriological Memoirs

MEM M: 7 IX No3


FMBRIUOGlCAI VFMOHLS

y ก
 ratph
10.
(plat. तु
(1)

~


14


Coser


$\qquad$





of


